# Copyright (c) Tencent Inc. All rights reserved. import os.path as osp import cv2 import torch from mmengine.config import Config from mmengine.dataset import Compose from mmdet.apis import init_detector from mmdet.utils import get_test_pipeline_cfg def inference(model, image, texts, test_pipeline, score_thr=0.3, max_dets=100): image = cv2.imread(image) image = image[:, :, [2, 1, 0]] data_info = dict(img=image, img_id=0, texts=texts) data_info = test_pipeline(data_info) data_batch = dict(inputs=data_info['inputs'].unsqueeze(0), data_samples=[data_info['data_samples']]) with torch.no_grad(): output = model.test_step(data_batch)[0] pred_instances = output.pred_instances # score thresholding pred_instances = pred_instances[pred_instances.scores.float() > score_thr] # max detections if len(pred_instances.scores) > max_dets: indices = pred_instances.scores.float().topk(max_dets)[1] pred_instances = pred_instances[indices] pred_instances = pred_instances.cpu().numpy() boxes = pred_instances['bboxes'] labels = pred_instances['labels'] scores = pred_instances['scores'] label_texts = [texts[x][0] for x in labels] return boxes, labels, label_texts, scores if __name__ == "__main__": config_file = "configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py" checkpoint = "weights/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain_1280ft-14996a36.pth" cfg = Config.fromfile(config_file) cfg.work_dir = osp.join('./work_dirs') # init model cfg.load_from = checkpoint model = init_detector(cfg, checkpoint=checkpoint, device='cuda:0') test_pipeline_cfg = get_test_pipeline_cfg(cfg=cfg) test_pipeline_cfg[0].type = 'mmdet.LoadImageFromNDArray' test_pipeline = Compose(test_pipeline_cfg) texts = [['person'], ['bus'], [' ']] image = "demo/sample_images/bus.jpg" print(f"starting to detect: {image}") results = inference(model, image, texts, test_pipeline) format_str = [ f"obj-{idx}: {box}, label-{lbl}, class-{lbl_text}, score-{score}" for idx, (box, lbl, lbl_text, score) in enumerate(zip(*results)) ] print("detecting results:") for q in format_str: print(q)