## Reparameterize YOLO-World The reparameterization incorporates text embeddings as parameters into the model. For example, in the final classification layer, text embeddings are reparameterized into a simple 1x1 convolutional layer.
### Key Advantages from Reparameterization > Reparameterized YOLO-World still has zero-shot ability! * **Efficiency:** reparameterized YOLO-World has a simple and efficient archtecture, e.g., `conv1x1` is faster than `transpose & matmul`. In addition, it enables further optmization for deployment. * **Accuracy:** reparameterized YOLO-World supports fine-tuning. Compared to the normal `fine-tuning` or `prompt tuning`, **reparameterized version can optimize the `neck` and `head` independently** since the `neck` and `head` have different parameters and do not depend on `text embeddings` anymore! For example, fine-tuning the **reparameterized YOLO-World** obtains *46.3 AP* on COCO *val2017* while fine-tuning the normal version obtains *46.1 AP*, with all hyper-parameters kept the same. ### Getting Started #### 1. Prepare cutstom text embeddings You need to generate the text embeddings by [`toos/generate_text_prompts.py`](../tools/generate_text_prompts.py) and save it as a `numpy.array` with shape `NxD`. #### 2. Reparameterizing Reparameterizing will generate a new checkpoint with text embeddings! Check those files first: * model checkpoint * text embeddings We mainly reparameterize two groups of modules: * head (`YOLOWorldHeadModule`) * neck (`MaxSigmoidCSPLayerWithTwoConv`) ```bash python tools/reparameterize_yoloworld.py \ --model path/to/checkpoint \ --out-dir path/to/save/re-parameterized/ \ --text-embed path/to/text/embeddings \ --conv-neck ``` #### 3. Prepare the model config Please see the sample config: [`finetune_coco/yolo_world_v2_s_rep_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py`](../configs/finetune_coco/yolo_world_v2_s_rep_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py) for reparameterized training. * `RepConvMaxSigmoidCSPLayerWithTwoConv`: ```python neck=dict(type='YOLOWorldPAFPN', guide_channels=num_classes, embed_channels=neck_embed_channels, num_heads=neck_num_heads, block_cfg=dict(type='RepConvMaxSigmoidCSPLayerWithTwoConv', guide_channels=num_classes)), ``` * `RepYOLOWorldHeadModule`: ```python bbox_head=dict(head_module=dict(type='RepYOLOWorldHeadModule', embed_dims=text_channels, num_guide=num_classes, num_classes=num_classes)), ``` #### 4. Reparameterized Training **Reparameterized YOLO-World** is easier to fine-tune and can be treated as an enhanced and pre-trained YOLOv8! You can check [`finetune_coco/yolo_world_v2_s_rep_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py`](../configs/finetune_coco/yolo_world_v2_s_rep_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py) for more details.