import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "pokemon-model_transferlearning.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_pokemon(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) # Resize the image to 150x150 image = np.array(image) image = np.expand_dims(image, axis=0) # Expand dimensions to create batch size of 1 # Predict prediction = model.predict(image) # Assuming the model's output layer uses softmax activation and there are three outputs prediction = prediction.flatten() predictions = np.round(prediction, 2) # Flatten the predictions and round them # Separate the probabilities for each class p_clefairy = predictions[0] # Probability for Clefairy p_snorlax = predictions[1] # Probability for Snorlax p_squirtle = predictions[2] # Probability for Squirtle return { 'clefairy': p_clefairy, 'snorlax': p_snorlax, 'squirtle': p_squirtle } # Create the Gradio interface input_image = gr.Image() iface = gr.Interface( fn=predict_pokemon, inputs=input_image, outputs=gr.Label(), examples=["test/Squirtle1.png", "test/Squirtle2.jpg", "test/Squirtle3.jpg", "test/Snorlax1.jpg", "test/Snorlax2.jpg", "test/Snorlax3.png", "test/Clefairy1.png", "test/Clefairy2.png", "test/Clefairy3.png"], description="A simple mlp classification model for image classification using the mnist dataset.") iface.launch()