""" Clean chatbot arena battle log. Usage: python3 clean_battle_data.py --mode conv_release """ import argparse import datetime import json import os from pytz import timezone import time from tqdm import tqdm from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS from fastchat.utils import detect_language VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"] IDENTITY_WORDS = [ "vicuna", "lmsys", "koala", "uc berkeley", "open assistant", "laion", "chatglm", "chatgpt", "gpt-4", "openai", "anthropic", "claude", "bard", "palm", "lamda", "google", "llama", "qianwan", "alibaba", "mistral", "zhipu", "KEG lab", "01.AI", "AI2", "Tülu", "Tulu", "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.", "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.", "API REQUEST ERROR. Please increase the number of max tokens.", "**API REQUEST ERROR** Reason: The response was blocked.", "**API REQUEST ERROR**", ] for i in range(len(IDENTITY_WORDS)): IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower() def remove_html(raw): if raw.startswith("

"): return raw[raw.find(": ") + 2 : -len("

\n")] return raw def to_openai_format(messages): roles = ["user", "assistant"] ret = [] for i, x in enumerate(messages): ret.append({"role": roles[i % 2], "content": x[1]}) return ret def replace_model_name(old_name, tstamp): replace_dict = { "bard": "palm-2", "claude-v1": "claude-1", "claude-instant-v1": "claude-instant-1", "oasst-sft-1-pythia-12b": "oasst-pythia-12b", "claude-2": "claude-2.0", } if old_name in ["gpt-4", "gpt-3.5-turbo"]: if tstamp > 1687849200: return old_name + "-0613" else: return old_name + "-0314" if old_name in replace_dict: return replace_dict[old_name] return old_name def read_file(filename): data = [] for retry in range(5): try: # lines = open(filename).readlines() for l in open(filename): row = json.loads(l) if row["type"] in VOTES: data.append(row) break except FileNotFoundError: time.sleep(2) return data def read_file_parallel(log_files, num_threads=16): data_all = [] from multiprocessing import Pool with Pool(num_threads) as p: ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files))) for ret in ret_all: data_all.extend(ret) return data_all def clean_battle_data( log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False ): data = read_file_parallel(log_files, num_threads=16) convert_type = { "leftvote": "model_a", "rightvote": "model_b", "tievote": "tie", "bothbad_vote": "tie (bothbad)", } all_models = set() all_ips = dict() ct_anony = 0 ct_invalid = 0 ct_leaked_identity = 0 ct_banned = 0 battles = [] for row in data: if row["models"][0] is None or row["models"][1] is None: continue # Resolve model names models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])] if "model_name" in row["states"][0]: models_hidden = [ row["states"][0]["model_name"], row["states"][1]["model_name"], ] if models_hidden[0] is None: models_hidden = models_public else: models_hidden = models_public if (models_public[0] == "" and models_public[1] != "") or ( models_public[1] == "" and models_public[0] != "" ): ct_invalid += 1 continue if models_public[0] == "" or models_public[0] == "Model A": anony = True models = models_hidden ct_anony += 1 else: anony = False models = models_public if not models_public == models_hidden: ct_invalid += 1 continue # Detect langauge state = row["states"][0] if state["offset"] >= len(state["messages"]): ct_invalid += 1 continue lang_code = detect_language(state["messages"][state["offset"]][1]) # Drop conversations if the model names are leaked leaked_identity = False messages = "" for i in range(2): state = row["states"][i] for turn_idx, (role, msg) in enumerate( state["messages"][state["offset"] :] ): if msg: messages += msg.lower() for word in IDENTITY_WORDS: if word in messages: leaked_identity = True break if leaked_identity: ct_leaked_identity += 1 continue # Replace bard with palm models = [replace_model_name(m, row["tstamp"]) for m in models] # Exclude certain models if exclude_model_names and any(x in exclude_model_names for x in models): ct_invalid += 1 continue question_id = row["states"][0]["conv_id"] conversation_a = to_openai_format( row["states"][0]["messages"][row["states"][0]["offset"] :] ) conversation_b = to_openai_format( row["states"][1]["messages"][row["states"][1]["offset"] :] ) ip = row["ip"] if ip not in all_ips: all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": len(all_ips)} all_ips[ip]["count"] += 1 if sanitize_ip: user_id = f"arena_user_{all_ips[ip]['sanitized_id']}" else: user_id = f"{all_ips[ip]['ip']}" if ban_ip_list is not None and ip in ban_ip_list: ct_banned += 1 continue # Save the results battles.append( dict( question_id=question_id, model_a=models[0], model_b=models[1], winner=convert_type[row["type"]], judge=f"arena_user_{user_id}", conversation_a=conversation_a, conversation_b=conversation_b, turn=len(conversation_a) // 2, anony=anony, language=lang_code, tstamp=row["tstamp"], ) ) all_models.update(models_hidden) battles.sort(key=lambda x: x["tstamp"]) last_updated_tstamp = battles[-1]["tstamp"] last_updated_datetime = datetime.datetime.fromtimestamp( last_updated_tstamp, tz=timezone("US/Pacific") ).strftime("%Y-%m-%d %H:%M:%S %Z") print( f"#votes: {len(data)}, #invalid votes: {ct_invalid}, " f"#leaked_identity: {ct_leaked_identity} " f"#banned: {ct_banned} " ) print(f"#battles: {len(battles)}, #anony: {ct_anony}") print(f"#models: {len(all_models)}, {all_models}") print(f"last-updated: {last_updated_datetime}") if ban_ip_list is not None: for ban_ip in ban_ip_list: if ban_ip in all_ips: del all_ips[ban_ip] print("Top 30 IPs:") print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30]) return battles if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--max-num-files", type=int) parser.add_argument( "--mode", type=str, choices=["simple", "conv_release"], default="simple" ) parser.add_argument("--exclude-model-names", type=str, nargs="+") parser.add_argument("--ban-ip-file", type=str) parser.add_argument("--sanitize-ip", action="store_true", default=False) args = parser.parse_args() log_files = get_log_files(args.max_num_files) ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None battles = clean_battle_data( log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip ) last_updated_tstamp = battles[-1]["tstamp"] cutoff_date = datetime.datetime.fromtimestamp( last_updated_tstamp, tz=timezone("US/Pacific") ).strftime("%Y%m%d") if args.mode == "simple": for x in battles: for key in [ "conversation_a", "conversation_b", "question_id", ]: del x[key] print("Samples:") for i in range(4): print(battles[i]) output = f"clean_battle_{cutoff_date}.json" elif args.mode == "conv_release": new_battles = [] for x in battles: if not x["anony"]: continue for key in []: del x[key] new_battles.append(x) battles = new_battles output = f"clean_battle_conv_{cutoff_date}.json" with open(output, "w") as fout: json.dump(battles, fout, indent=2, ensure_ascii=False) print(f"Write cleaned data to {output}")