import streamlit as st import pandas as pd # 假设你的数据存储在一个CSV文件中,我们将从这个文件中读取数据 def load_data(): return pd.read_csv("benchmark_data.csv") # 不区分大小写的搜索功能 def case_insensitive_search(data, query, column): if query: # 如果用户输入了搜索词 return data[data[column].str.lower().str.contains(query.lower())] return data # 页面布局和功能 def main(): st.title("Multihop-RAG Benchmark Space") data = load_data() # 添加搜索框 st.sidebar.header("Search Options") framework_query = st.sidebar.text_input("Search by Framework") model_query = st.sidebar.text_input("Search by Model") # 根据输入执行搜索 if framework_query: data = case_insensitive_search(data, framework_query, 'framework') if model_query: data = case_insensitive_search(data, model_query, 'model') # 显示数据 st.header("Benchmark Results") st.write("Displaying results for MRR@10 and Hit@10 across different frameworks, models, and chunk sizes.") st.dataframe(data) # 数据统计和图表 if st.sidebar.checkbox("Show Metrics Distribution"): st.subheader("Metrics Distribution") st.bar_chart(data[['MRR@10', 'Hit@10']]) if __name__ == "__main__": main()