""" taken from: https://github.com/karpathy/minGPT/ GPT model: - the initial stem consists of a combination of token encoding and a positional encoding - the meat of it is a uniform sequence of Transformer blocks - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - all blocks feed into a central residual pathway similar to resnets - the final decoder is a linear projection into a vanilla Softmax classifier """ import math import logging import torch import torch.nn as nn from torch.nn import functional as F import sys sys.path.insert(0, '.') # nopep8 from train import instantiate_from_config logger = logging.getLogger(__name__) class GPTConfig: """ base GPT config, params common to all GPT versions """ embd_pdrop = 0.1 resid_pdrop = 0.1 attn_pdrop = 0.1 def __init__(self, vocab_size, block_size, **kwargs): self.vocab_size = vocab_size self.block_size = block_size for k,v in kwargs.items(): setattr(self, k, v) class GPT1Config(GPTConfig): """ GPT-1 like network roughly 125M params """ n_layer = 12 n_head = 12 n_embd = 768 class GPT2Config(GPTConfig): """ GPT-2 like network roughly 1.5B params """ # TODO class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence mask = torch.tril(torch.ones(config.block_size, config.block_size)) if hasattr(config, "n_unmasked"): mask[:config.n_unmasked, :config.n_unmasked] = 1 self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) self.n_head = config.n_head def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) y = self.attn_drop(att) @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y, att class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), # nice nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x): # x = x + self.attn(self.ln1(x)) # x is a tuple (x, attention) x, _ = x res = x x = self.ln1(x) x, att = self.attn(x) x = res + x x = x + self.mlp(self.ln2(x)) return x, att class GPT(nn.Module): """ the full GPT language model, with a context size of block_size """ def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): super().__init__() config = GPTConfig(vocab_size=vocab_size, block_size=block_size, embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, n_layer=n_layer, n_head=n_head, n_embd=n_embd, n_unmasked=n_unmasked) # input embedding stem self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size self.apply(self._init_weights) self.config = config logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, idx, embeddings=None, targets=None): # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector if embeddings is not None: # prepend explicit embeddings token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) t = token_embeddings.shape[1] assert t <= self.block_size, "Cannot forward, model block size is exhausted." position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) # returns only last layer attention # giving tuple (x, None) just because Sequential takes a single input but outputs two (x, atttention). # att is (B, H, T, T) x, att = self.blocks((x, None)) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss, att class DummyGPT(nn.Module): # for debugging def __init__(self, add_value=1): super().__init__() self.add_value = add_value def forward(self, idx): raise NotImplementedError('Model should output attention') return idx + self.add_value, None class CodeGPT(nn.Module): """Takes in semi-embeddings""" def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): super().__init__() config = GPTConfig(vocab_size=vocab_size, block_size=block_size, embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, n_layer=n_layer, n_head=n_head, n_embd=n_embd, n_unmasked=n_unmasked) # input embedding stem self.tok_emb = nn.Linear(in_channels, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size self.apply(self._init_weights) self.config = config logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Conv1d, nn.Conv2d)): torch.nn.init.xavier_uniform(module.weight) if module.bias is not None: module.bias.data.fill_(0.01) def forward(self, idx, embeddings=None, targets=None): raise NotImplementedError('Model should output attention') # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector if embeddings is not None: # prepend explicit embeddings token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) t = token_embeddings.shape[1] assert t <= self.block_size, "Cannot forward, model block size is exhausted." position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss class GPTFeats(GPT): def __init__(self, feat_embedding_config, GPT_config): super().__init__(**GPT_config) # patching the config by removing the default parameters for Conv1d if feat_embedding_config.target.split('.')[-1] in ['LSTM', 'GRU']: for p in ['in_channels', 'out_channels', 'padding', 'kernel_size']: if p in feat_embedding_config.params: feat_embedding_config.params.pop(p) self.embedder = instantiate_from_config(config=feat_embedding_config) if isinstance(self.embedder, nn.Linear): print('Checkout cond_transformer.configure_optimizers. Make sure not to use decay with Linear') def forward(self, idx, feats): if isinstance(self.embedder, nn.Linear): feats = feats.permute(0, 2, 1) feats = self.embedder(feats) elif isinstance(self.embedder, (nn.LSTM, nn.GRU)): feats = feats.permute(0, 2, 1) feats, _ = self.embedder(feats) elif isinstance(self.embedder, (nn.Conv1d, nn.Identity)): # (B, D', T) <- (B, D, T) feats = self.embedder(feats) # (B, T, D') <- (B, T, D) feats = feats.permute(0, 2, 1) else: raise NotImplementedError # calling forward from super return super().forward(idx, embeddings=feats) class GPTFeatsPosEnc(GPT): def __init__(self, feat_embedding_config, GPT_config, PosEnc_config): super().__init__(**GPT_config) # patching the config by removing the default parameters for Conv1d if feat_embedding_config.target.split('.')[-1] in ['LSTM', 'GRU']: for p in ['in_channels', 'out_channels', 'padding', 'kernel_size']: if p in feat_embedding_config.params: feat_embedding_config.params.pop(p) self.embedder = instantiate_from_config(config=feat_embedding_config) self.pos_emb_vis = nn.Parameter(torch.zeros(1, PosEnc_config['block_size_v'], PosEnc_config['n_embd'])) self.pos_emb_aud = nn.Parameter(torch.zeros(1, PosEnc_config['block_size_a'], PosEnc_config['n_embd'])) if isinstance(self.embedder, nn.Linear): print('Checkout cond_transformer.configure_optimizers. Make sure not to use decay with Linear') def foward(self, idx, feats): if isinstance(self.embedder, nn.Linear): feats = feats.permute(0, 2, 1) feats = self.embedder(feats) elif isinstance(self.embedder, (nn.LSTM, nn.GRU)): feats = feats.permute(0, 2, 1) feats, _ = self.embedder(feats) elif isinstance(self.embedder, (nn.Conv1d, nn.Identity)): # (B, D', T) <- (B, D, T) feats = self.embedder(feats) # (B, T, D') <- (B, T, D) feats = feats.permute(0, 2, 1) else: raise NotImplementedError # calling forward from super # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector if feats is not None: # prepend explicit feats token_embeddings = torch.cat((feats, token_embeddings), dim=1) t = token_embeddings.shape[1] assert t <= self.block_size, "Cannot forward, model block size is exhausted." vis_t = self.pos_emb_vis.shape[1] position_embeddings = torch.cat([self.pos_emb_vis, self.pos_emb_aud[:, :t-vis_t, :]]) x = self.drop(token_embeddings + position_embeddings) # returns only last layer attention # giving tuple (x, None) just because Sequential takes a single input but outputs two (x, atttention). # att is (B, H, T, T) x, att = self.blocks((x, None)) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss loss = None return logits, loss, att class GPTClass(GPT): def __init__(self, token_embedding_config, GPT_config): super().__init__(**GPT_config) self.embedder = instantiate_from_config(config=token_embedding_config) def forward(self, idx, token): token = self.embedder(token) # calling forward from super return super().forward(idx, embeddings=token) class GPTFeatsClass(GPT): def __init__(self, feat_embedding_config, token_embedding_config, GPT_config): super().__init__(**GPT_config) # patching the config by removing the default parameters for Conv1d if feat_embedding_config.target.split('.')[-1] in ['LSTM', 'GRU']: for p in ['in_channels', 'out_channels', 'padding', 'kernel_size']: if p in feat_embedding_config.params: feat_embedding_config.params.pop(p) self.feat_embedder = instantiate_from_config(config=feat_embedding_config) self.cls_embedder = instantiate_from_config(config=token_embedding_config) if isinstance(self.feat_embedder, nn.Linear): print('Checkout cond_transformer.configure_optimizers. Make sure not to use decay with Linear') def forward(self, idx, feats_token_dict: dict): feats = feats_token_dict['feature'] token = feats_token_dict['target'] # Features. Output size: (B, T, D') if isinstance(self.feat_embedder, nn.Linear): feats = feats.permute(0, 2, 1) feats = self.feat_embedder(feats) elif isinstance(self.feat_embedder, (nn.LSTM, nn.GRU)): feats = feats.permute(0, 2, 1) feats, _ = self.feat_embedder(feats) elif isinstance(self.feat_embedder, (nn.Conv1d, nn.Identity)): # (B, D', T) <- (B, D, T) feats = self.feat_embedder(feats) # (B, T, D') <- (B, T, D) feats = feats.permute(0, 2, 1) else: raise NotImplementedError # Class. Output size: (B, 1, D') token = self.cls_embedder(token) # Concat condition_emb = torch.cat([feats, token], dim=1) # calling forward from super return super().forward(idx, embeddings=condition_emb) #### sampling utils def top_k_logits(logits, k): v, ix = torch.topk(logits, k) out = logits.clone() out[out < v[:, [-1]]] = -float('Inf') return out @torch.no_grad() def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): """ take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in the sequence, feeding the predictions back into the model each time. Clearly the sampling has quadratic complexity unlike an RNN that is only linear, and has a finite context window of block_size, unlike an RNN that has an infinite context window. """ block_size = model.get_block_size() model.eval() for k in range(steps): x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed raise NotImplementedError('v-iashin: the model outputs (logits, loss, attention)') logits, _ = model(x_cond) # pluck the logits at the final step and scale by temperature logits = logits[:, -1, :] / temperature # optionally crop probabilities to only the top k options if top_k is not None: logits = top_k_logits(logits, top_k) # apply softmax to convert to probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution or take the most likely if sample: ix = torch.multinomial(probs, num_samples=1) else: _, ix = torch.topk(probs, k=1, dim=-1) # append to the sequence and continue x = torch.cat((x, ix), dim=1) return x #### clustering utils class KMeans(nn.Module): def __init__(self, ncluster=512, nc=3, niter=10): super().__init__() self.ncluster = ncluster self.nc = nc self.niter = niter self.shape = (3,32,32) self.register_buffer("C", torch.zeros(self.ncluster,nc)) self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) def is_initialized(self): return self.initialized.item() == 1 @torch.no_grad() def initialize(self, x): N, D = x.shape assert D == self.nc, D c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random for i in range(self.niter): # assign all pixels to the closest codebook element a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) # move each codebook element to be the mean of the pixels that assigned to it c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) # re-assign any poorly positioned codebook elements nanix = torch.any(torch.isnan(c), dim=1) ndead = nanix.sum().item() print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters self.C.copy_(c) self.initialized.fill_(1) def forward(self, x, reverse=False, shape=None): if not reverse: # flatten bs,c,h,w = x.shape assert c == self.nc x = x.reshape(bs,c,h*w,1) C = self.C.permute(1,0) C = C.reshape(1,c,1,self.ncluster) a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices return a else: # flatten bs, HW = x.shape """ c = self.C.reshape( 1, self.nc, 1, self.ncluster) c = c[bs*[0],:,:,:] c = c[:,:,HW*[0],:] x = x.reshape(bs, 1, HW, 1) x = x[:,3*[0],:,:] x = torch.gather(c, dim=3, index=x) """ x = self.C[x] x = x.permute(0,2,1) shape = shape if shape is not None else self.shape x = x.reshape(bs, *shape) return x if __name__ == '__main__': import torch from omegaconf import OmegaConf import numpy as np from tqdm import tqdm device = torch.device('cuda:2') torch.cuda.set_device(device) cfg = OmegaConf.load('./configs/vggsound_transformer.yaml') model = instantiate_from_config(cfg.model.params.transformer_config) model = model.to(device) mel_num = cfg.data.params.mel_num spec_crop_len = cfg.data.params.spec_crop_len feat_depth = cfg.data.params.feat_depth feat_crop_len = cfg.data.params.feat_crop_len gcd = np.gcd(mel_num, spec_crop_len) z_idx_size = (2, int(mel_num / gcd) * int(spec_crop_len / gcd)) for i in tqdm(range(300)): z_indices = torch.randint(0, cfg.model.params.transformer_config.params.GPT_config.vocab_size, z_idx_size).to(device) c = torch.rand(2, feat_depth, feat_crop_len).to(device) logits, loss, att = model(z_indices[:, :-1], feats=c)