import gradio as gr import os, torch, io os.system('python -m unidic download') from melo.api import TTS speed = 1.0 import tempfile device = 'cuda' if torch.cuda.is_available() else 'cpu' model = TTS(language='EN', device=device) speaker_ids = model.hps.data.spk2id def synthesize(speaker, text, speed=1.0, progress=gr.Progress()): with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f: model.tts_to_file(text, speaker_ids[speaker], f.name, speed=speed, pbar=progress.tqdm) return f.name with gr.Blocks() as demo: gr.Markdown('# MeloTTS\n\nAn unofficial demo of [MeloTTS](https://github.com/myshell-ai/MeloTTS) from MyShell AI. MeloTTS is a permissively licensed (MIT) SOTA multi-speaker TTS model.\n\nI am not affiliated with MyShell AI in any way.\n\nThis demo currently only supports English, but the model itself supports other languages.') with gr.Group(): speaker = gr.Dropdown(speaker_ids.keys(), interactive=True, value='EN-Default', label='Speaker') speed = gr.Slider(label='Speed', minimum=0.1, maximum=3.0, value=1.0, interactive=True) text = gr.Textbox(label="Text to speak", value='The field of text to speech has seen rapid development recently') btn = gr.Button('Synthesize', variant='primary') aud = gr.Audio(interactive=False) btn.click(synthesize, inputs=[speaker, text, speed], outputs=[aud]) demo.queue(api_open=False).launch(show_api=False)