"""Sampling scripts for TiTok on ImageNet. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Reference: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py """ """ torchrun --nnodes=1 --nproc_per_node=8 --rdzv-endpoint=localhost:9999 sample_imagenet_rar.py config=configs/training/generator/rar.yaml \ experiment.output_dir="rar_b" \ experiment.generator_checkpoint="rar_b.bin" \ model.generator.hidden_size=768 \ model.generator.num_hidden_layers=24 \ model.generator.num_attention_heads=16 \ model.generator.intermediate_size=3072 \ model.generator.randomize_temperature=1.0 \ model.generator.guidance_scale=16.0 \ model.generator.guidance_scale_pow=2.75 """ import demo_util import numpy as np import torch import torch.distributed as dist from PIL import Image import os import math from tqdm import tqdm from huggingface_hub import hf_hub_download from utils.train_utils import create_pretrained_tokenizer def create_npz_from_sample_folder(sample_dir, num=50_000): """ Builds a single .npz file from a folder of .png samples. """ samples = [] for i in tqdm(range(num), desc="Building .npz file from samples"): sample_pil = Image.open(f"{sample_dir}/{i:06d}.png") sample_np = np.asarray(sample_pil).astype(np.uint8) samples.append(sample_np) samples = np.stack(samples) assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) npz_path = f"{sample_dir}.npz" np.savez(npz_path, arr_0=samples) print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") return npz_path def main(): config = demo_util.get_config_cli() num_fid_samples = 50000 per_proc_batch_size = 50 sample_folder_dir = config.experiment.output_dir seed = 42 torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False torch.set_grad_enabled(False) # setup DDP. dist.init_process_group("nccl") rank = dist.get_rank() world_size = dist.get_world_size() device = rank % torch.cuda.device_count() seed = seed + rank torch.manual_seed(seed) torch.cuda.set_device(device) print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") if rank == 0: # download the maskgit-vq tokenizer hf_hub_download(repo_id="fun-research/TiTok", filename=f"{config.model.vq_model.pretrained_tokenizer_weight}", local_dir="./") # download the rar generator weight hf_hub_download(repo_id="yucornetto/RAR", filename=f"{config.experiment.generator_checkpoint}", local_dir="./") dist.barrier() # maskgit-vq as tokenizer tokenizer = create_pretrained_tokenizer(config) generator = demo_util.get_rar_generator(config) tokenizer.to(device) generator.to(device) if rank == 0: os.makedirs(sample_folder_dir, exist_ok=True) print(f"Saving .png samples at {sample_folder_dir}") dist.barrier() # Figure out how many samples we need to generate on each GPU and how many iterations we need to run: n = per_proc_batch_size global_batch_size = n * dist.get_world_size() assert num_fid_samples % global_batch_size == 0 if rank == 0: print(f"Total number of images that will be sampled: {num_fid_samples}") samples_needed_this_gpu = int(num_fid_samples // dist.get_world_size()) assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" iterations = int(samples_needed_this_gpu // n) pbar = range(iterations) pbar = tqdm(pbar) if rank == 0 else pbar total = 0 all_classes = list(range(config.model.generator.condition_num_classes)) * (num_fid_samples // config.model.generator.condition_num_classes) subset_len = len(all_classes) // world_size all_classes = np.array(all_classes[rank * subset_len: (rank+1)*subset_len], dtype=np.int64) cur_idx = 0 for _ in pbar: y = torch.from_numpy(all_classes[cur_idx * n: (cur_idx+1)*n]).to(device) cur_idx += 1 samples = demo_util.sample_fn( generator=generator, tokenizer=tokenizer, labels=y.long(), randomize_temperature=config.model.generator.randomize_temperature, guidance_scale=config.model.generator.guidance_scale, guidance_scale_pow=config.model.generator.guidance_scale_pow, device=device ) # Save samples to disk as individual .png files for i, sample in enumerate(samples): index = i * dist.get_world_size() + rank + total Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png") total += global_batch_size # Make sure all processes have finished saving their samples before attempting to convert to .npz dist.barrier() if rank == 0: create_npz_from_sample_folder(sample_folder_dir, num_fid_samples) print("Done.") dist.barrier() dist.destroy_process_group() if __name__ == "__main__": main()