import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B") def predict(input_text): """Generate a response using the Llama model.""" inputs = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate(inputs, max_length=150, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Metadata title = "Llama 3.2-3B Model Demonstration" description = """ ## How to Use 1. Enter a prompt in the input box. 2. Click 'Submit' to get the model's response. 3. Explore the examples provided for inspiration. ## Model Details - **Name:** Llama 3.2-3B - **Capabilities:** Text generation, summarization, translation, etc. This Space demonstrates the capabilities of Meta's Llama 3.2-3B model. """ examples = [ ["Generate a summary for: Artificial intelligence is the simulation of human intelligence..."], ["Translate the text: Hello, how are you? into French."], ["What are the benefits of renewable energy sources?"], ["Write a poem about the ocean."], ] # Interface def create_interface(): """Create a Gradio interface for the Llama model.""" return gr.Interface( fn=predict, inputs=gr.Textbox(lines=5, placeholder="Type your input here...", label="Enter your prompt"), outputs=gr.Textbox(label="Model Output"), title=title, description=description, examples=examples, theme="compact" ) # Launch the interface interface = create_interface() interface.launch(share=True, server_name="0.0.0.0")