import gradio as gr import tensorflow as tf import numpy as np import gdown from PIL import Image labels = [ "plane", "car", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck", ] # a file url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL" output = "modelV2Lmixed.keras" gdown.download(url, output, quiet=False) inception_net = tf.keras.models.load_model("./modelV2Lmixed.keras") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.efficientnet.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(10)} return confidences import gradio as gr gr.Interface( fn=classify_image, inputs=gr.inputs.Image(shape=(32, 32)), outputs=gr.outputs.Label(num_top_classes=3), examples=["03_cat.jpg", "05_dog.jpg"], theme="default", css=".footer{display:none !important}", ).launch()