# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/16MxXQeF3O0htL9eQ61aa6ZxnApGg9TKN """ import gradio as gr import numpy as np import torch from transformers import pipeline, VitsModel, VitsTokenizer, FSMTForConditionalGeneration, FSMTTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" #eng audio to text transformation asr_pipe = pipeline("automatic-speech-recognition", model="asapp/sew-d-tiny-100k-ft-ls100h", device=device) #eng text to rus text translation translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") #rus text to rus speech transformation vits_model = VitsModel.from_pretrained("facebook/mms-tts-rus") vits_tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") def transform_audio_to_speech_en(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] def translator(text): translated_text = translation_pipe(text) return translated_text[0]['translation_text'] def transform_audio_to_speech_ru(translated_text): translated_text = translator(translated_text) inputs = vits_tokenizer(translated_text, return_tensors="pt") with torch.no_grad(): speech = vits_model(**inputs).waveform return speech.cpu() def speech_to_speech_translation(audio): translated_text = transform_audio_to_speech_en(audio) synthesised_speech = transform_audio_to_speech_ru(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech[0] title = "Cascaded STST" description = """ В приложении используется модель SEW-D-tiny(https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h), распознающая английскую речь и преобразующая ее в строку. Затем с помощью модели Helsinki-NLP/opus-mt-en-ru(https://huggingface.co/Helsinki-NLP/opus-mt-en-ru) текст переводится на русский язык и преобразуется в русскую речь с помощью модели facebook/mms-tts-rus(https://huggingface.co/facebook/mms-tts-rus). """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./personal_example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()