# Imports import gradio as gr import os import random import time import spaces import torch import threading import socket import requests from llama_cpp import Llama from huggingface_hub import hf_hub_download # Variables HF_TOKEN = os.environ.get("HF_TOKEN") REPO = "FUGG-B22x8-2-MLdraziW/ihanaPrayizaM"[::-1] FILE = "WizardLM-2-8x22B.IQ1_M.gguf" TIMEOUT = 30 MAX_SEED = 9007199254740991 DEFAULT_INPUT = "" DEFAULT_SYSTEM = "Statical is a totally normal human named 'Statical'. Statical responds very briefly, truthfully, and accurately." TAG_USER = "USER" TAG_ASSISTANT = "STATICAL" DEFAULT_SEPARATOR = "," DEFAULT_STOP_SEQUENCES = f"{TAG_USER}:,{TAG_ASSISTANT}:," model = Llama(model_path=hf_hub_download(repo_id=REPO, filename=FILE, token=HF_TOKEN), n_ctx=32768, n_threads=48, n_batch=512, n_gpu_layers=0, verbose=True) # Functions def get_seed(seed): seed = seed.strip() if seed.isdigit(): return int(seed) else: return random.randint(0, MAX_SEED) def generate(input=DEFAULT_INPUT, history=[], system=DEFAULT_SYSTEM, stream=False, temperature=1, top_p=0.95, top_k=50, rep_p=1.2, max_tokens=64, seed=None, separator=DEFAULT_SEPARATOR, stop_sequences=DEFAULT_STOP_SEQUENCES): print("[GENERATE] Model is generating...") memory = "" for item in history: if item[0]: memory += f"{TAG_USER}: {item[0].strip()}\n" if item[1]: memory += f"{TAG_ASSISTANT}: {item[1].strip()}\n" prompt = f"{system.strip()}\n{memory}{TAG_USER}: {input.strip()}\n{TAG_ASSISTANT}: " print(prompt) parameters = { "prompt": prompt, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repeat_penalty": rep_p, "max_tokens": max_tokens, "stop": [seq.strip() for seq in stop_sequences.split(separator)] if stop_sequences else [], "seed": get_seed(seed), "stream": stream } event = threading.Event() try: output = model.create_completion(**parameters) print("[GENERATE] Model has generated.") if stream: buffer = "" timer = threading.Timer(TIMEOUT, event.set) timer.start() try: for _, item in enumerate(output): if event.is_set(): raise TimeoutError("[ERROR] Generation timed out.") buffer += item["choices"][0]["text"] yield buffer timer.cancel() timer = threading.Timer(TIMEOUT, event.set) timer.start() finally: timer.cancel() else: yield output["choices"][0]["text"] except TimeoutError as e: yield str(e) finally: timer.cancel() @spaces.GPU(duration=15) def gpu(): return # Initialize theme = gr.themes.Default( primary_hue="violet", secondary_hue="indigo", neutral_hue="zinc", spacing_size="sm", radius_size="lg", font=[gr.themes.GoogleFont('Kanit'), 'ui-sans-serif', 'system-ui', 'sans-serif'], font_mono=[gr.themes.GoogleFont('Kanit'), 'ui-monospace', 'Consolas', 'monospace'], ).set(background_fill_primary='*neutral_50', background_fill_secondary='*neutral_100') model_base = "https://huggingface.co/MaziyarPanahi/WizardLM-2-8x22B-GGUF" # [::-1] model_quant = "https://huggingface.co/alpindale/WizardLM-2-8x22B" # [::-1] with gr.Blocks(theme=theme) as main: with gr.Column(): gr.Markdown("# 👁️‍🗨️ WizardLM") gr.Markdown("⠀⠀• ⚡ A text generation inference for one of the best open-source text models: WizardLM-2-8x22B.") gr.Markdown("⠀⠀• ⚠️ WARNING! The inference is very slow due to the model being HUGE; it takes 10 seconds before it starts generating; please avoid high max token parameters and sending large amounts of text; note it uses CPU because I cannot figure out how to run it in GPU without overloading the model.") gr.Markdown(f"⠀⠀• 🔗 Link to models: {model_base} (BASE), {model_quant} (QUANT)") with gr.Column(): gr.ChatInterface( fn=generate, additional_inputs_accordion=gr.Accordion(label="⚙️ Configurations", open=False, render=False), additional_inputs=[ gr.Textbox(lines=1, value=DEFAULT_SYSTEM, label="🪄 System", render=False), gr.Checkbox(label="⚡ Stream", value=True, render=False), gr.Slider(minimum=0, maximum=2, step=0.01, value=1, label="🌡️ Temperature", render=False), gr.Slider(minimum=0.01, maximum=0.99, step=0.01, value=0.95, label="🧲 Top P", render=False), gr.Slider(minimum=1, maximum=2048, step=1, value=50, label="📊 Top K", render=False), gr.Slider(minimum=0.01, maximum=2, step=0.01, value=1.2, label="📚 Repetition Penalty", render=False), gr.Slider(minimum=1, maximum=2048, step=1, value=256, label="⏳ Max New Tokens", render=False), gr.Textbox(lines=1, value="", label="🌱 Seed (Blank for random)", render=False), gr.Textbox(lines=1, value=DEFAULT_SEPARATOR, label="🏷️ Stop Sequences Separator", render=False), gr.Textbox(lines=1, value=DEFAULT_STOP_SEQUENCES, label="🛑 Stop Sequences (Blank for none)", render=False), ] ) main.launch(show_api=False)