--- library_name: transformers license: apache-2.0 base_model: deepvk/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-spam-detection results: [] --- # bert-base-uncased-finetuned-spam-detection This model is a fine-tuned version of [deepvk/bert-base-uncased](https://huggingface.co/deepvk/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0508 - Accuracy: 0.9862 - F1: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0626 | 1.0 | 967 | 0.0504 | 0.9838 | 0.9838 | | 0.0258 | 2.0 | 1934 | 0.0508 | 0.9862 | 0.9862 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.4.1 - Datasets 3.0.2 - Tokenizers 0.20.1