--- language: "en" thumbnail: tags: - Source Separation - Speech Separation - Audio Source Separation - WSJ0-3Mix - SepFormer - Transformer license: "apache-2.0" datasets: - WSJ0-3Mix metrics: - SI-SNRi - SDRi ---

# SepFormer trained on WSJ0-3Mix This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain, and pretrained on WSJ0-3Mix dataset. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance is 19.8 dB SI-SNRi on the test set of WSJ0-3Mix dataset. | Release | Test-Set SI-SNRi | Test-Set SDRi | |:-------------:|:--------------:|:--------------:| | 09-03-21 | 19.8dB | 20.0dB | ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform source separation on your own audio file ```python from speechbrain.pretrained import SepformerSeparation as separator import torchaudio model = separator.from_hparams(source="speechbrain/sepformer-wsj03mix", savedir='pretrained_models/sepformer-wsj03mix') est_sources = model.separate_file(path='speechbrain/sepformer-wsj03mix/test_mixture_3spks.wav') torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 8000) torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 8000) torchaudio.save("source3hat.wav", est_sources[:, :, 2].detach().cpu(), 8000) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (fc2eabb7). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/WSJ0Mix/separation python train.py hparams/sepformer.yaml --data_folder=your_data_folder ``` Note: change num_spks to 3 in the yaml file. You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1ruScDoqiSDNeoDa__u5472UUPKPu54b2?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing SpeechBrain ``` @misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/speechbrain/speechbrain}}, } ``` #### Referencing SepFormer ``` @inproceedings{subakan2021attention, title={Attention is All You Need in Speech Separation}, author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong}, year={2021}, booktitle={ICASSP 2021} } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain