---
base_model: srikarvar/fine_tuned_model_5
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:560
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The `num_steps` parameter is employed to indicate the quantity
of steps when preparing the recipe.
sentences:
- The `num_steps` parameter is used to specify the number of steps when preparing
the recipe.
- The `rename_fields` function creates a new form with fields renamed to provided
names.
- The main difference between a ProductList and an InventoryList is that a ProductList
provides random access to the items, while an InventoryList updates progressively
as you browse the list.
- source_sentence: The "extract" function creates a portion of the data without making
a copy, with the possibility to indicate an offset and size.
sentences:
- 'Sure! Here''s an example:'
- You can create a sauce by combining the ingredients and using the `with_stirring()`
function to mix them evenly.
- The "extract" function computes a zero-copy subset of the data, with the option
to specify an offset and length.
- source_sentence: The `iterate_folder` function cycles through files inside a folder.
sentences:
- You can find it in the latest version of the user manual. Click on the provided
link to access the main version.
- The `iterate_folder` function iterates over files within a folder.
- It is a guide on how to process any type of module.
- source_sentence: Technical descriptions of the framework’s APIs and modules can
be found in the reference section.
sentences:
- The `to_spreadsheet` method in the Plant class is used to convert the PlantData
to a `SpreadsheetRow` or `SpreadsheetTable`.
- Yes, there are technical details available in the reference section that explain
how the framework’s APIs and modules work.
- The `storage_dir` parameter is used to specify the directory to store ingredients.
- source_sentence: Once you have completed your library script, you can generate a
library card and submit it to the server.
sentences:
- Once your library script is ready, you can create a library card and upload it
to the server.
- It replaces the document's header.
- Many product formats are supported, including CSV, XML, JSON, image, and video
files.
model-index:
- name: SentenceTransformer based on srikarvar/fine_tuned_model_5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: e5 cogcache small refined
type: e5-cogcache-small-refined
metrics:
- type: cosine_accuracy@1
value: 0.9821428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9821428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9821428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3273809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9821428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9821428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9898335099655963
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9866071428571429
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9866071428571429
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9821428571428571
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9821428571428571
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9821428571428571
name: Dot Precision@1
- type: dot_precision@3
value: 0.3273809523809524
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.9821428571428571
name: Dot Recall@1
- type: dot_recall@3
value: 0.9821428571428571
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9898335099655963
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9866071428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.9866071428571429
name: Dot Map@100
- type: cosine_accuracy@1
value: 0.9821428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9821428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9821428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3273809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9821428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9821428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9898335099655963
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9866071428571429
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9866071428571429
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9821428571428571
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9821428571428571
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9821428571428571
name: Dot Precision@1
- type: dot_precision@3
value: 0.3273809523809524
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.9821428571428571
name: Dot Recall@1
- type: dot_recall@3
value: 0.9821428571428571
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9898335099655963
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9866071428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.9866071428571429
name: Dot Map@100
---
# SentenceTransformer based on srikarvar/fine_tuned_model_5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_10")
# Run inference
sentences = [
'Once you have completed your library script, you can generate a library card and submit it to the server.',
'Once your library script is ready, you can create a library card and upload it to the server.',
"It replaces the document's header.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `e5-cogcache-small-refined`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9821 |
| cosine_accuracy@3 | 0.9821 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9821 |
| cosine_precision@3 | 0.3274 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9821 |
| cosine_recall@3 | 0.9821 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9898 |
| cosine_mrr@10 | 0.9866 |
| **cosine_map@100** | **0.9866** |
| dot_accuracy@1 | 0.9821 |
| dot_accuracy@3 | 0.9821 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.9821 |
| dot_precision@3 | 0.3274 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.9821 |
| dot_recall@3 | 0.9821 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9898 |
| dot_mrr@10 | 0.9866 |
| dot_map@100 | 0.9866 |
#### Information Retrieval
* Dataset: `e5-cogcache-small-refined`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9821 |
| cosine_accuracy@3 | 0.9821 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9821 |
| cosine_precision@3 | 0.3274 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9821 |
| cosine_recall@3 | 0.9821 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9898 |
| cosine_mrr@10 | 0.9866 |
| **cosine_map@100** | **0.9866** |
| dot_accuracy@1 | 0.9821 |
| dot_accuracy@3 | 0.9821 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.9821 |
| dot_precision@3 | 0.3274 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.9821 |
| dot_recall@3 | 0.9821 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9898 |
| dot_mrr@10 | 0.9866 |
| dot_map@100 | 0.9866 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 560 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 560 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
It retrieves items from a list.
| It selects items from a list.
|
| The goal of seasoning a cast iron pan is to create a non-stick surface and protect it from rust.
| The purpose of seasoning a cast iron pan is to create a non-stick surface and prevent rust.
|
| The Spark manual covers topics like data analysis, machine learning, graph processing, and stream processing.
| The Spark documentation covers topics such as data analysis, machine learning, graph processing, and stream processing.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 1e-05
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters