--- base_model: srikarvar/fine_tuned_model_5 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:560 - loss:MultipleNegativesRankingLoss widget: - source_sentence: The `num_steps` parameter is employed to indicate the quantity of steps when preparing the recipe. sentences: - The `num_steps` parameter is used to specify the number of steps when preparing the recipe. - The `rename_fields` function creates a new form with fields renamed to provided names. - The main difference between a ProductList and an InventoryList is that a ProductList provides random access to the items, while an InventoryList updates progressively as you browse the list. - source_sentence: The "extract" function creates a portion of the data without making a copy, with the possibility to indicate an offset and size. sentences: - 'Sure! Here''s an example:' - You can create a sauce by combining the ingredients and using the `with_stirring()` function to mix them evenly. - The "extract" function computes a zero-copy subset of the data, with the option to specify an offset and length. - source_sentence: The `iterate_folder` function cycles through files inside a folder. sentences: - You can find it in the latest version of the user manual. Click on the provided link to access the main version. - The `iterate_folder` function iterates over files within a folder. - It is a guide on how to process any type of module. - source_sentence: Technical descriptions of the framework’s APIs and modules can be found in the reference section. sentences: - The `to_spreadsheet` method in the Plant class is used to convert the PlantData to a `SpreadsheetRow` or `SpreadsheetTable`. - Yes, there are technical details available in the reference section that explain how the framework’s APIs and modules work. - The `storage_dir` parameter is used to specify the directory to store ingredients. - source_sentence: Once you have completed your library script, you can generate a library card and submit it to the server. sentences: - Once your library script is ready, you can create a library card and upload it to the server. - It replaces the document's header. - Many product formats are supported, including CSV, XML, JSON, image, and video files. model-index: - name: SentenceTransformer based on srikarvar/fine_tuned_model_5 results: - task: type: information-retrieval name: Information Retrieval dataset: name: e5 cogcache small refined type: e5-cogcache-small-refined metrics: - type: cosine_accuracy@1 value: 0.9821428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9821428571428571 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9821428571428571 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3273809523809524 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19999999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9821428571428571 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9821428571428571 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9898335099655963 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9866071428571429 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9866071428571429 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.9821428571428571 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.9821428571428571 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 1.0 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.9821428571428571 name: Dot Precision@1 - type: dot_precision@3 value: 0.3273809523809524 name: Dot Precision@3 - type: dot_precision@5 value: 0.19999999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.9821428571428571 name: Dot Recall@1 - type: dot_recall@3 value: 0.9821428571428571 name: Dot Recall@3 - type: dot_recall@5 value: 1.0 name: Dot Recall@5 - type: dot_recall@10 value: 1.0 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9898335099655963 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9866071428571429 name: Dot Mrr@10 - type: dot_map@100 value: 0.9866071428571429 name: Dot Map@100 - type: cosine_accuracy@1 value: 0.9821428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9821428571428571 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9821428571428571 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3273809523809524 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19999999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9821428571428571 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9821428571428571 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9898335099655963 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9866071428571429 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9866071428571429 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.9821428571428571 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.9821428571428571 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 1.0 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.9821428571428571 name: Dot Precision@1 - type: dot_precision@3 value: 0.3273809523809524 name: Dot Precision@3 - type: dot_precision@5 value: 0.19999999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.9821428571428571 name: Dot Recall@1 - type: dot_recall@3 value: 0.9821428571428571 name: Dot Recall@3 - type: dot_recall@5 value: 1.0 name: Dot Recall@5 - type: dot_recall@10 value: 1.0 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9898335099655963 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9866071428571429 name: Dot Mrr@10 - type: dot_map@100 value: 0.9866071428571429 name: Dot Map@100 --- # SentenceTransformer based on srikarvar/fine_tuned_model_5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("srikarvar/fine_tuned_model_10") # Run inference sentences = [ 'Once you have completed your library script, you can generate a library card and submit it to the server.', 'Once your library script is ready, you can create a library card and upload it to the server.', "It replaces the document's header.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `e5-cogcache-small-refined` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9821 | | cosine_accuracy@3 | 0.9821 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.9821 | | cosine_precision@3 | 0.3274 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.9821 | | cosine_recall@3 | 0.9821 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.9898 | | cosine_mrr@10 | 0.9866 | | **cosine_map@100** | **0.9866** | | dot_accuracy@1 | 0.9821 | | dot_accuracy@3 | 0.9821 | | dot_accuracy@5 | 1.0 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.9821 | | dot_precision@3 | 0.3274 | | dot_precision@5 | 0.2 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.9821 | | dot_recall@3 | 0.9821 | | dot_recall@5 | 1.0 | | dot_recall@10 | 1.0 | | dot_ndcg@10 | 0.9898 | | dot_mrr@10 | 0.9866 | | dot_map@100 | 0.9866 | #### Information Retrieval * Dataset: `e5-cogcache-small-refined` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9821 | | cosine_accuracy@3 | 0.9821 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.9821 | | cosine_precision@3 | 0.3274 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.9821 | | cosine_recall@3 | 0.9821 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.9898 | | cosine_mrr@10 | 0.9866 | | **cosine_map@100** | **0.9866** | | dot_accuracy@1 | 0.9821 | | dot_accuracy@3 | 0.9821 | | dot_accuracy@5 | 1.0 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.9821 | | dot_precision@3 | 0.3274 | | dot_precision@5 | 0.2 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.9821 | | dot_recall@3 | 0.9821 | | dot_recall@5 | 1.0 | | dot_recall@10 | 1.0 | | dot_ndcg@10 | 0.9898 | | dot_mrr@10 | 0.9866 | | dot_map@100 | 0.9866 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 560 training samples * Columns: anchor and positive * Approximate statistics based on the first 560 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------| | It retrieves items from a list. | It selects items from a list. | | The goal of seasoning a cast iron pan is to create a non-stick surface and protect it from rust. | The purpose of seasoning a cast iron pan is to create a non-stick surface and prevent rust. | | The Spark manual covers topics like data analysis, machine learning, graph processing, and stream processing. | The Spark documentation covers topics such as data analysis, machine learning, graph processing, and stream processing. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 1e-05 - `warmup_ratio`: 0.1 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | e5-cogcache-small-refined_cosine_map@100 | |:------:|:----:|:-------------:|:----------------------------------------:| | 0 | 0 | - | 0.9777 | | 0.3125 | 10 | 0.0118 | - | | 0.625 | 20 | 0.0025 | - | | 0.9375 | 30 | 0.006 | - | | 1.0 | 32 | - | 0.9866 | | 1.25 | 40 | 0.0008 | - | | 1.5625 | 50 | 0.0005 | - | | 1.875 | 60 | 0.0011 | - | | 2.0 | 64 | - | 0.9866 | | 2.1875 | 70 | 0.0006 | - | | 2.5 | 80 | 0.0003 | - | | 2.8125 | 90 | 0.001 | - | | 3.0 | 96 | - | 0.9866 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.0 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.34.2 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```