--- base_model: intfloat/multilingual-e5-small datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:546 - loss:TripletLoss widget: - source_sentence: How to cook a turkey? sentences: - How to make a turkey sandwich? - World's biggest desert by area - Steps to roast a turkey - source_sentence: What is the best way to learn a new language? sentences: - Author of the play 'Hamlet' - What is the fastest way to travel? - How can I effectively learn a new language? - source_sentence: Who wrote 'To Kill a Mockingbird'? sentences: - Who wrote 'The Great Gatsby'? - How can I effectively save money? - Author of 'To Kill a Mockingbird' - source_sentence: Who was the first person to climb Mount Everest? sentences: - Steps to visit the Great Wall of China - Who was the first person to climb K2? - First climber to reach the summit of Everest - source_sentence: What is the capital city of Canada? sentences: - First circumnavigator of the globe - What is the capital of Canada? - What is the capital city of Australia? model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-small results: - task: type: triplet name: Triplet dataset: name: triplet validation type: triplet-validation metrics: - type: cosine_accuracy value: 0.9672131147540983 name: Cosine Accuracy - type: dot_accuracy value: 0.03278688524590164 name: Dot Accuracy - type: manhattan_accuracy value: 0.9672131147540983 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9672131147540983 name: Euclidean Accuracy - type: max_accuracy value: 0.9672131147540983 name: Max Accuracy --- # SentenceTransformer based on intfloat/multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("srikarvar/multilingual-e5-small-triplet-final-1") # Run inference sentences = [ 'What is the capital city of Canada?', 'What is the capital of Canada?', 'What is the capital city of Australia?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `triplet-validation` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.9672 | | dot_accuracy | 0.0328 | | manhattan_accuracy | 0.9672 | | euclidean_accuracy | 0.9672 | | **max_accuracy** | **0.9672** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 546 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-----------------------------------------------------|:----------------------------------------------|:-------------------------------------------------------| | What is the capital of Brazil? | Capital city of Brazil | What is the capital of Argentina? | | How do I install Python on my computer? | How do I set up Python on my PC? | How do I uninstall Python on my computer? | | How do I apply for a credit card? | How do I get a credit card? | How do I cancel a credit card? | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 0.7 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 61 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------|:---------------------------------------------------------|:-----------------------------------------------------| | How to create a podcast? | Steps to start a podcast | How to create a vlog? | | How many states are there in the USA? | Total number of states in the United States | How many provinces are there in Canada? | | What is the population of India? | How many people live in India? | What is the population of China? | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 0.7 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 2 - `learning_rate`: 5e-06 - `weight_decay`: 0.01 - `num_train_epochs`: 20 - `lr_scheduler_type`: cosine - `warmup_steps`: 50 - `load_best_model_at_end`: True - `optim`: adamw_torch_fused #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `learning_rate`: 5e-06 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 20 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 50 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | triplet-validation_max_accuracy | |:-----------:|:-------:|:-------------:|:----------:|:-------------------------------:| | 0.5714 | 10 | 0.6735 | - | - | | 0.9714 | 17 | - | 0.6198 | - | | 1.1429 | 20 | 0.6596 | - | - | | 1.7143 | 30 | 0.6357 | - | - | | 2.0 | 35 | - | 0.5494 | - | | 2.2857 | 40 | 0.596 | - | - | | 2.8571 | 50 | 0.5587 | - | - | | 2.9714 | 52 | - | 0.4479 | - | | 3.4286 | 60 | 0.5265 | - | - | | 4.0 | 70 | 0.4703 | 0.3363 | - | | 4.5714 | 80 | 0.4269 | - | - | | 4.9714 | 87 | - | 0.2414 | - | | 5.1429 | 90 | 0.3725 | - | - | | 5.7143 | 100 | 0.3438 | - | - | | 6.0 | 105 | - | 0.1711 | - | | 6.2857 | 110 | 0.3058 | - | - | | 6.8571 | 120 | 0.2478 | - | - | | 6.9714 | 122 | - | 0.1365 | - | | 7.4286 | 130 | 0.2147 | - | - | | 8.0 | 140 | 0.1971 | 0.1224 | - | | 8.5714 | 150 | 0.1946 | - | - | | 8.9714 | 157 | - | 0.1111 | - | | 9.1429 | 160 | 0.1516 | - | - | | 9.7143 | 170 | 0.1663 | - | - | | 10.0 | 175 | - | 0.1049 | - | | 10.2857 | 180 | 0.1534 | - | - | | 10.8571 | 190 | 0.1684 | - | - | | 10.9714 | 192 | - | 0.1027 | - | | 11.4286 | 200 | 0.1422 | - | - | | 12.0 | 210 | 0.1354 | 0.1007 | - | | 12.5714 | 220 | 0.1407 | - | - | | 12.9714 | 227 | - | 0.0990 | - | | 13.1429 | 230 | 0.154 | - | - | | 13.7143 | 240 | 0.1359 | - | - | | 14.0 | 245 | - | 0.0975 | - | | 14.2857 | 250 | 0.1397 | - | - | | 14.8571 | 260 | 0.1389 | - | - | | 14.9714 | 262 | - | 0.0969 | - | | 15.4286 | 270 | 0.15 | - | - | | 16.0 | 280 | 0.1273 | 0.0966 | - | | 16.5714 | 290 | 0.1318 | - | - | | 16.9714 | 297 | - | 0.0966 | - | | 17.1429 | 300 | 0.1276 | - | - | | 17.7143 | 310 | 0.1381 | - | - | | 18.0 | 315 | - | 0.0966 | - | | 18.2857 | 320 | 0.1284 | - | - | | 18.8571 | 330 | 0.1394 | - | - | | 18.9714 | 332 | - | 0.0965 | - | | **19.4286** | **340** | **0.1407** | **0.0965** | **0.9672** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.32.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```