---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:546
- loss:TripletLoss
widget:
- source_sentence: How to cook a turkey?
sentences:
- How to make a turkey sandwich?
- World's biggest desert by area
- Steps to roast a turkey
- source_sentence: What is the best way to learn a new language?
sentences:
- Author of the play 'Hamlet'
- What is the fastest way to travel?
- How can I effectively learn a new language?
- source_sentence: Who wrote 'To Kill a Mockingbird'?
sentences:
- Who wrote 'The Great Gatsby'?
- How can I effectively save money?
- Author of 'To Kill a Mockingbird'
- source_sentence: Who was the first person to climb Mount Everest?
sentences:
- Steps to visit the Great Wall of China
- Who was the first person to climb K2?
- First climber to reach the summit of Everest
- source_sentence: What is the capital city of Canada?
sentences:
- First circumnavigator of the globe
- What is the capital of Canada?
- What is the capital city of Australia?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet validation
type: triplet-validation
metrics:
- type: cosine_accuracy
value: 0.9672131147540983
name: Cosine Accuracy
- type: dot_accuracy
value: 0.03278688524590164
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9672131147540983
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9672131147540983
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9672131147540983
name: Max Accuracy
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-triplet-final-1")
# Run inference
sentences = [
'What is the capital city of Canada?',
'What is the capital of Canada?',
'What is the capital city of Australia?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `triplet-validation`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9672 |
| dot_accuracy | 0.0328 |
| manhattan_accuracy | 0.9672 |
| euclidean_accuracy | 0.9672 |
| **max_accuracy** | **0.9672** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 546 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
What is the capital of Brazil?
| Capital city of Brazil
| What is the capital of Argentina?
|
| How do I install Python on my computer?
| How do I set up Python on my PC?
| How do I uninstall Python on my computer?
|
| How do I apply for a credit card?
| How do I get a credit card?
| How do I cancel a credit card?
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 0.7
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 61 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | How to create a podcast?
| Steps to start a podcast
| How to create a vlog?
|
| How many states are there in the USA?
| Total number of states in the United States
| How many provinces are there in Canada?
|
| What is the population of India?
| How many people live in India?
| What is the population of China?
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 0.7
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 5e-06
- `weight_decay`: 0.01
- `num_train_epochs`: 20
- `lr_scheduler_type`: cosine
- `warmup_steps`: 50
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
#### All Hyperparameters