--- license: apache-2.0 library_name: peft base_model: ssong1/kgpt-j-5.8b datasets: - open-Orca/OpenOrca language: - en - kr --- #### This Model This model is a finetuned version of [EleutherAI/polyglot-ko-5.8b] (https://huggingface.co/EleutherAI/polyglot-ko-5.8b). It was aligned with [πŸ€— TRL's](https://github.com/huggingface/trl) `SFTTrainer` on the [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) dataset. #### How to use ```python import json import torch from peft import LoraConfig, get_peft_model from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel model1 = AutoModelForCausalLM.from_pretrained( "ssong1/gpt-j-5.8b", torch_dtype="auto", device_map="auto" ) lora_path = "ssong1/gpt-j-5.8b-sum-adapter" model2 = PeftModel.from_pretrained(model1, lora_path, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(lora_path) prompt_template = """\ {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" msg = "Q:λ‹€μŒ λ¬Έμ„œλ₯Ό μš”μ•½ ν•˜μ„Έμš”, Context:{context}" system_prompt = "You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can." context="""\ """ tokens = tokenizer.encode( prompt_template.format( system_prompt=system_prompt, prompt=msg.format(context=context), ), return_tensors="pt", ).to(device="auto", non_blocking=True) gen_tokens = model2.generate( input_ids=tokens, do_sample=False, temperature=0.5, max_length=1024, pad_token_id=63999, eos_token_id=63999, ) inputs = tokenizer.batch_decode([gen_tokens[0][: tokens[0].shape[0]]])[0] generated = tokenizer.batch_decode([gen_tokens[0][tokens[0].shape[0] :]])[0].replace( "<|im_end|>", "" ) print(inputs) print("\ngenerated:") print(generated) ``` ### Framework versions - PEFT 0.7.1