--- base_model: - AIMH/mental-longformer-base-4096 language: - en library_name: transformers license: mit metrics: - name: F1 Score type: f1 value: 0.5524 verified: false - name: Accuracy type: accuracy value: 0.6064 verified: false - name: Precision type: precision value: 0.602 verified: false - name: Recall type: recall value: 0.5385 verified: false pipeline_tag: text-classification --- # About This Model This model is fine-tuned from the checkpoint of [AIMH/mental-longformer-base-4096](https://huggingface.co/AIMH/mental-longformer-base-4096) using [drmuskangarg/CAMS](https://github.com/drmuskangarg/CAMS/) dataset. For more information about the base Longformer model, please visit their [model page](https://huggingface.co/allenai/longformer-base-4096). We used the same configuration as `AIMH/mental-longformer-base-4096` including their tokenizer. # Usage If you wish to use my model to infer your dataset or maybe pre-train it further, you can import my model in a Python script/notebook. ```py from transformers import LongformerTokenizer, LongformerForSequenceClassification tokenizer = LongformerTokenizer.from_pretrained("aimh/mental-longformer-base-4096") model = LongformerForSequenceClassification.from_pretrained("stackofsugar/mentallongformer-cams-finetuned") ``` If you prefer to use the high-level HuggingFace pipeline to make predictions, you can also do it in a Python script/notebook. ```py from transformers import pipeline pipe = pipeline("text-classification", model="stackofsugar/mentallongformer-cams-finetuned", tokenizer="aimh/mental-longformer-base-4096") ``` # More Information For more information, visit my [GitHub Repo](https://github.com/stackofsugar/depression-causal-analysis).