--- library_name: transformers tags: - masked-image-modeling - generated_from_trainer --- # smb-vision-large-1202 This model is trained from scratch using [VideoMAE](https://huggingface.co/docs/transformers/en/model_doc/videomae) on over 55k CT volumes. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-04 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 10.0 ### Training results { "_runtime": 2641.091489502, "_step": 399, "_timestamp": 1733187755.3146417, "_wandb.runtime": 2660, "train/epoch": 8.425414364640885, "train/global_step": 18300, "train/grad_norm": 0.04110511764883995, "train/learning_rate": 0.0001624558726951691, "train/loss": 0.4292 } ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0 - Datasets 3.0.2 - Tokenizers 0.20.1 ### How to use ```python # load data using `dataload.py` model = VideoMAEForPreTraining.from_pretrained( standardmodelbio/smb-vision-large, trust_remote_code=True, ) embedding = model.videomae(batch["image"]) ```