--- language: - te license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: whisper-small-telugu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: te_in split: test metrics: - name: Wer type: wer value: 39.67740444608772 --- # whisper-small-telugu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. It achieves the following results on the evaluation set (google/flerus telugu test set): - Loss: 0.3622 - Wer: 39.6774 [openai/whisper-small](https://huggingface.co/openai/whisper-small) has the following zero shot performance on google/fleurs test set: - Wer: 117.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2623 | 1.55 | 500 | 0.2733 | 65.9750 | | 0.0859 | 3.1 | 1000 | 0.2045 | 39.7652 | | 0.0538 | 4.64 | 1500 | 0.2220 | 42.3811 | | 0.0265 | 6.19 | 2000 | 0.2526 | 42.3626 | | 0.0179 | 7.74 | 2500 | 0.2754 | 42.1685 | | 0.008 | 9.29 | 3000 | 0.2966 | 41.2257 | | 0.0061 | 10.83 | 3500 | 0.2950 | 40.6202 | | 0.0034 | 12.38 | 4000 | 0.3049 | 40.3198 | | 0.004 | 13.93 | 4500 | 0.3106 | 40.5879 | | 0.0018 | 15.48 | 5000 | 0.3199 | 40.1812 | | 0.0016 | 17.03 | 5500 | 0.3346 | 39.8345 | | 0.0006 | 18.57 | 6000 | 0.3337 | 40.2274 | | 0.0003 | 20.12 | 6500 | 0.3396 | 40.2597 | | 0.0005 | 21.67 | 7000 | 0.3465 | 40.1072 | | 0.0002 | 23.22 | 7500 | 0.3485 | 39.7282 | | 0.0002 | 24.77 | 8000 | 0.3519 | 39.7837 | | 0.0001 | 26.32 | 8500 | 0.3567 | 39.7560 | | 0.0001 | 27.86 | 9000 | 0.3614 | 39.8068 | | 0.0 | 29.41 | 9500 | 0.3609 | 39.4925 | | 0.0 | 30.96 | 10000 | 0.3622 | 39.6774 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2