--- license: mit language: - ja library_name: transformers pipeline_tag: text-generation tags: - japanese - llama-2 - instruction-tuning --- # Stockmark-13b-instruct **Stockmark-13b-instruct** is an instruction-tuned version of [Stockmark-13b](https://huggingface.co/stockmark/stockmark-13b), a 13 billion parameter Japanese LLM. This model is developed by [Stockmark Inc.](https://stockmark.co.jp/) We used data (2023/11/03 version) from [Project of Development of Japanese Instruction data for LLM](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/) for instruction tuning. Please see our [blog](https://tech.stockmark.co.jp/blog/202311_stockmark_13b_instruct/) for more details. ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b-instruct", device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-13b-instruct") instruction = "自然言語処理とは?" prompt = f"""### Input: {instruction} ### Output: """ inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7 ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) print(output) ``` ## Training dataset [Project of Development of Japanese Instruction data for LLM](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/) ## License MIT ## Developed by [Stockmark Inc.](https://stockmark.co.jp/) ## Author [Takahiro Omi](https://huggingface.co/omitakahiro)