--- license: mit language: - ja library_name: transformers pipeline_tag: text-generation tags: - japanese - llama-2 --- # stockmark/stockmark-13b Stockmark-13b is a 13 billion parameter LLM pretrained from scratch based on Japanese corpus of about 220B tokens. This model is developed by [Stockmark Inc.](https://stockmark.co.jp/) Please see our [blog](https://tech.stockmark.co.jp/blog/202310_stockmark_13b/) for more details. This project is supported by [AWS LLM development support program](https://aws.amazon.com/jp/local/llm-development-support-program/). We also provide [stockmark-13b-instruct](https://huggingface.co/stockmark/stockmark-13b-instruct), which is the instruction tuned version of stockmark-13b. ## How to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer # For A100 or H100 GPU model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b", device_map="auto", torch_dtype=torch.bfloat16) # If you use a T4 or V100 GPU, please load a model in 8 bit with the below code. # To do so, you need to install `bitsandbytes` via `pip install bitsandbytes`. # model = AutoModelForCausalLM.from_pretrained("stockmark/stockmark-13b", device_map={"": 0}, load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-13b") inputs = tokenizer("自然言語処理とは", return_tensors="pt").to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7 ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) print(output) ``` ## Examples: - LoRA tuning: https://huggingface.co/stockmark/stockmark-13b/blob/main/notebooks/LoRA.ipynb ## Training dataset We have used Japanese corpus of total of about 220 billion tokens. |corpus|tokens after preprocessing| |:---:|:---:| |Stockmark Web Corpus (This dataset will not be released)|9.1 billion| |Patent|34.8 billion| |Wikipedia|1.0 billion| |CC100|10.9 billion| |mC4|53.2 billion| |CommonCrawl (snapshot: 2023-23, 2022-49, 2022-21, 2021-21)|112.9 billion| ## Accelerator and Library - Accelerator: AWS Trainium - https://aws.amazon.com/machine-learning/trainium/ - Library for distributed training: neuronx-nemo-megatron - https://github.com/aws-neuron/neuronx-nemo-megatron ## License [MIT](https://opensource.org/licenses/MIT) ## Developed by [Stockmark Inc.](https://stockmark.co.jp/) ## Author [Takahiro Omi](https://huggingface.co/omitakahiro)