--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_62types_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8268475544448411 - name: Recall type: recall value: 0.8836322014498283 - name: F1 type: f1 value: 0.8542973072666913 - name: Accuracy type: accuracy value: 0.955501776025606 --- # CNEC1_1_62types_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2611 - Precision: 0.8268 - Recall: 0.8836 - F1: 0.8543 - Accuracy: 0.9555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.601 | 1.7 | 500 | 0.4369 | 0.6449 | 0.6810 | 0.6625 | 0.9094 | | 0.3697 | 3.4 | 1000 | 0.2542 | 0.7377 | 0.8176 | 0.7756 | 0.9440 | | 0.2295 | 5.1 | 1500 | 0.2484 | 0.7583 | 0.8523 | 0.8026 | 0.9449 | | 0.1531 | 6.8 | 2000 | 0.2301 | 0.7952 | 0.8710 | 0.8314 | 0.9496 | | 0.1107 | 8.5 | 2500 | 0.2284 | 0.8192 | 0.8729 | 0.8452 | 0.9529 | | 0.0801 | 10.2 | 3000 | 0.2435 | 0.8308 | 0.8901 | 0.8595 | 0.9561 | | 0.0621 | 11.9 | 3500 | 0.2507 | 0.8156 | 0.8794 | 0.8463 | 0.9544 | | 0.0454 | 13.61 | 4000 | 0.2611 | 0.8268 | 0.8836 | 0.8543 | 0.9555 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0