--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8564668769716088 - name: Recall type: recall value: 0.8971499380421314 - name: F1 type: f1 value: 0.876336493847085 - name: Accuracy type: accuracy value: 0.9708532522091844 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Precision: 0.8565 - Recall: 0.8971 - F1: 0.8763 - Accuracy: 0.9709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4393 | 1.0 | 900 | 0.1671 | 0.7756 | 0.8195 | 0.7969 | 0.9590 | | 0.1716 | 2.0 | 1800 | 0.1409 | 0.8155 | 0.8583 | 0.8364 | 0.9662 | | 0.1326 | 3.0 | 2700 | 0.1288 | 0.8203 | 0.8748 | 0.8467 | 0.9687 | | 0.1027 | 4.0 | 3600 | 0.1408 | 0.8290 | 0.8732 | 0.8505 | 0.9683 | | 0.0891 | 5.0 | 4500 | 0.1447 | 0.8485 | 0.9000 | 0.8735 | 0.9725 | | 0.0715 | 6.0 | 5400 | 0.1393 | 0.8561 | 0.8868 | 0.8712 | 0.9713 | | 0.0644 | 7.0 | 6300 | 0.1586 | 0.8517 | 0.8918 | 0.8713 | 0.9702 | | 0.0535 | 8.0 | 7200 | 0.1526 | 0.8481 | 0.8810 | 0.8643 | 0.9696 | | 0.0492 | 9.0 | 8100 | 0.1795 | 0.8529 | 0.8984 | 0.8751 | 0.9702 | | 0.0391 | 10.0 | 9000 | 0.1903 | 0.8536 | 0.8938 | 0.8733 | 0.9693 | | 0.0323 | 11.0 | 9900 | 0.1885 | 0.8615 | 0.9046 | 0.8825 | 0.9724 | | 0.0274 | 12.0 | 10800 | 0.2099 | 0.8585 | 0.9025 | 0.8800 | 0.9696 | | 0.0237 | 13.0 | 11700 | 0.1944 | 0.8624 | 0.9009 | 0.8812 | 0.9720 | | 0.0245 | 14.0 | 12600 | 0.2129 | 0.8618 | 0.8967 | 0.8789 | 0.9711 | | 0.0206 | 15.0 | 13500 | 0.2155 | 0.8565 | 0.8971 | 0.8763 | 0.9709 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0