--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8311333636777424 - name: Recall type: recall value: 0.8812741312741312 - name: F1 type: f1 value: 0.8554696650269384 - name: Accuracy type: accuracy value: 0.9682167173692597 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1827 - Precision: 0.8311 - Recall: 0.8813 - F1: 0.8555 - Accuracy: 0.9682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0633 | 0.56 | 500 | 0.2514 | 0.4967 | 0.6544 | 0.5648 | 0.9322 | | 0.2454 | 1.11 | 1000 | 0.2044 | 0.6504 | 0.7901 | 0.7134 | 0.9532 | | 0.2064 | 1.67 | 1500 | 0.1721 | 0.7254 | 0.7828 | 0.7530 | 0.9562 | | 0.1698 | 2.22 | 2000 | 0.1755 | 0.7472 | 0.8388 | 0.7904 | 0.9604 | | 0.1472 | 2.78 | 2500 | 0.1478 | 0.7547 | 0.8417 | 0.7958 | 0.9624 | | 0.1244 | 3.33 | 3000 | 0.1516 | 0.7934 | 0.8412 | 0.8166 | 0.9638 | | 0.12 | 3.89 | 3500 | 0.1366 | 0.7851 | 0.8692 | 0.8250 | 0.9665 | | 0.0946 | 4.44 | 4000 | 0.1678 | 0.7815 | 0.8494 | 0.8141 | 0.9652 | | 0.1024 | 5.0 | 4500 | 0.1389 | 0.7756 | 0.8509 | 0.8115 | 0.9649 | | 0.0765 | 5.56 | 5000 | 0.1563 | 0.7824 | 0.8571 | 0.8181 | 0.9663 | | 0.0802 | 6.11 | 5500 | 0.1677 | 0.8024 | 0.8586 | 0.8296 | 0.9646 | | 0.0612 | 6.67 | 6000 | 0.1723 | 0.8068 | 0.8769 | 0.8404 | 0.9662 | | 0.0529 | 7.22 | 6500 | 0.1698 | 0.8230 | 0.8774 | 0.8493 | 0.9686 | | 0.0476 | 7.78 | 7000 | 0.1648 | 0.8271 | 0.8702 | 0.8481 | 0.9689 | | 0.0487 | 8.33 | 7500 | 0.1721 | 0.8287 | 0.8707 | 0.8491 | 0.9683 | | 0.0392 | 8.89 | 8000 | 0.1787 | 0.8222 | 0.8769 | 0.8487 | 0.9681 | | 0.0361 | 9.44 | 8500 | 0.1803 | 0.8392 | 0.8818 | 0.8600 | 0.9682 | | 0.034 | 10.0 | 9000 | 0.1827 | 0.8311 | 0.8813 | 0.8555 | 0.9682 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0