--- base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC_1_1_slavicbert results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8513220632856524 - name: Recall type: recall value: 0.8671081677704194 - name: F1 type: f1 value: 0.8591426071741033 - name: Accuracy type: accuracy value: 0.9509352959214965 --- # CNEC_1_1_slavicbert This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.3720 - Precision: 0.8513 - Recall: 0.8671 - F1: 0.8591 - Accuracy: 0.9509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3658 | 0.85 | 1000 | 0.2671 | 0.8101 | 0.8172 | 0.8136 | 0.9366 | | 0.227 | 1.7 | 2000 | 0.2624 | 0.8190 | 0.8172 | 0.8181 | 0.9380 | | 0.141 | 2.56 | 3000 | 0.2474 | 0.8317 | 0.8424 | 0.8370 | 0.9448 | | 0.092 | 3.41 | 4000 | 0.2498 | 0.8412 | 0.8534 | 0.8472 | 0.9460 | | 0.0839 | 4.26 | 5000 | 0.2689 | 0.8438 | 0.8583 | 0.8510 | 0.9489 | | 0.0698 | 5.11 | 6000 | 0.2830 | 0.8420 | 0.8539 | 0.8479 | 0.9473 | | 0.0507 | 5.96 | 7000 | 0.2902 | 0.8359 | 0.8503 | 0.8431 | 0.9468 | | 0.0344 | 6.81 | 8000 | 0.3221 | 0.8310 | 0.8512 | 0.8410 | 0.9478 | | 0.0249 | 7.67 | 9000 | 0.3262 | 0.8444 | 0.8508 | 0.8476 | 0.9478 | | 0.0185 | 8.52 | 10000 | 0.3214 | 0.8458 | 0.8525 | 0.8492 | 0.9502 | | 0.0151 | 9.37 | 11000 | 0.3399 | 0.8382 | 0.8578 | 0.8479 | 0.9499 | | 0.01 | 10.22 | 12000 | 0.3348 | 0.8385 | 0.8574 | 0.8478 | 0.9492 | | 0.0086 | 11.07 | 13000 | 0.3636 | 0.8395 | 0.8543 | 0.8468 | 0.9479 | | 0.0092 | 11.93 | 14000 | 0.3644 | 0.8419 | 0.8578 | 0.8498 | 0.9485 | | 0.0058 | 12.78 | 15000 | 0.3624 | 0.8450 | 0.8618 | 0.8533 | 0.9503 | | 0.0032 | 13.63 | 16000 | 0.3703 | 0.8483 | 0.8614 | 0.8548 | 0.9507 | | 0.003 | 14.48 | 17000 | 0.3720 | 0.8513 | 0.8671 | 0.8591 | 0.9509 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0