--- librar_yname: transformers license: other base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - llama-factory - freeze - generated_from_trainer model-index: - name: output results: [] --- # output This model is a fine-tuned version of Qwen2.5-1.5B-Instruct on the alpaca_zh_demo dataset. It achieves the following results on the evaluation set: - Loss: 1.9959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0102 | 1.1111 | 500 | 1.7723 | | 0.5375 | 2.2222 | 1000 | 1.9768 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.3