--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-a-clp-ls results: [] --- # whisper-a-clp-ls This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0240 - Wer: 10.0629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | No log | 1.0 | 40 | 0.1713 | 46.9602 | | No log | 2.0 | 80 | 0.0920 | 28.3019 | | 1.2158 | 3.0 | 120 | 0.1828 | 31.2369 | | 1.2158 | 4.0 | 160 | 0.2743 | 42.3480 | | 0.1604 | 5.0 | 200 | 0.1326 | 62.8931 | | 0.1604 | 6.0 | 240 | 0.0734 | 25.7862 | | 0.1604 | 7.0 | 280 | 0.0510 | 15.7233 | | 0.0502 | 8.0 | 320 | 0.0262 | 10.4822 | | 0.0502 | 9.0 | 360 | 0.0320 | 11.9497 | | 0.0202 | 10.0 | 400 | 0.0229 | 7.1279 | | 0.0202 | 10.7342 | 429 | 0.0240 | 10.0629 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0