--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-nm-no-ls results: [] --- # whisper-nm-no-ls This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1565 - Wer: 11.1562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 33 | 0.1768 | 8.9249 | | No log | 2.0 | 66 | 0.2439 | 20.8925 | | No log | 3.0 | 99 | 0.4285 | 255.7809 | | 1.2232 | 4.0 | 132 | 0.2449 | 26.3692 | | 1.2232 | 5.0 | 165 | 0.5282 | 37.9310 | | 1.2232 | 6.0 | 198 | 0.2170 | 25.3550 | | 0.3525 | 7.0 | 231 | 0.1980 | 74.4422 | | 0.3525 | 8.0 | 264 | 0.1585 | 14.6045 | | 0.3525 | 9.0 | 297 | 0.1963 | 18.0527 | | 0.0919 | 10.0 | 330 | 0.1787 | 12.9817 | | 0.0919 | 11.0 | 363 | 0.1565 | 11.1562 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0