--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: alpindale/Mistral-7B-v0.2-hf model-index: - name: train_2024-05-15-20-33-30 results: [] --- # Install ```bash pip install peft transformers bitsandbytes ``` # Run by transformers ```python from transformers import TextStreamer, AutoTokenizer, AutoModelForCausalLM from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained("alpindale/Mistral-7B-v0.2-hf",) mis_model = AutoModelForCausalLM.from_pretrained("alpindale/Mistral-7B-v0.2-hf", load_in_4bit = True) mis_model = PeftModel.from_pretrained(mis_model, "svjack/emoji_Mistral7B_v2_lora") mis_model = mis_model.eval() streamer = TextStreamer(tokenizer) def mistral_hf_predict(prompt, mis_model = mis_model, tokenizer = tokenizer, streamer = streamer, do_sample = True, top_p = 0.95, top_k = 40, max_new_tokens = 512, max_input_length = 3500, temperature = 0.9, repetition_penalty = 1.0, device = "cuda"): messages = [ {"role": "user", "content": prompt[:max_input_length]} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) generated_ids = mis_model.generate(model_inputs, max_new_tokens=max_new_tokens, do_sample=do_sample, streamer = streamer, top_p = top_p, top_k = top_k, temperature = temperature, repetition_penalty = repetition_penalty, ) out = tokenizer.batch_decode(generated_ids)[0].split("[/INST]")[-1].replace("", "").strip() return out out = mistral_hf_predict(''' 对下面的内容添加emoji 走在公园的大道上,可以发现许多树的叶子,已染上了秋的色彩,到处可以看到黄灿灿的树叶。 其中最引人注目的是那金黄金黄的银杏树,远远望去,犹如金色的海洋. 微风吹过,银杏树叶纷纷飘落,就像一只只美丽的蝴蝶,展开双翅在空中飞舞。 ''', repetition_penalty = 1.1) print(out) ``` # Output ```txt 🍃🎊🍂🌞走在公园的大道上,可以发现许多树的叶子,已染上了秋的色彩,到处可以看到黄灿灿的树叶 ☀️。 其中最引人注目的是那金黄金黄的银杏树 🌟,远远望去,犹如金色的海洋 🌊。 微风吹过,银杏树叶纷纷飘落,就像一只只美丽的蝴蝶 🦋,展开双翅在空中飞舞 ✈️ ``` # train_2024-05-15-20-33-30 This model is a fine-tuned version of [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) on the emoji_add_instruction_zh dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1