--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: fine-tuned-flan-t5-20-epochs-wang-lab results: [] --- # fine-tuned-flan-t5-20-epochs-wang-lab This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7769 - Rouge1: 0.2685 - Rouge2: 0.0913 - Rougel: 0.2316 - Rougelsum: 0.2318 - Gen Len: 19.51 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 301 | 0.8814 | 0.2192 | 0.0734 | 0.1907 | 0.1911 | 19.4 | | 1.4237 | 2.0 | 602 | 0.8212 | 0.2283 | 0.0703 | 0.1962 | 0.1977 | 19.39 | | 1.4237 | 3.0 | 903 | 0.7864 | 0.2324 | 0.0656 | 0.1989 | 0.201 | 19.35 | | 0.8542 | 4.0 | 1204 | 0.7753 | 0.2489 | 0.0789 | 0.2142 | 0.2156 | 19.27 | | 0.7603 | 5.0 | 1505 | 0.7662 | 0.2458 | 0.0749 | 0.2119 | 0.2131 | 19.29 | | 0.7603 | 6.0 | 1806 | 0.7608 | 0.2512 | 0.0896 | 0.2203 | 0.2217 | 19.48 | | 0.699 | 7.0 | 2107 | 0.7611 | 0.259 | 0.0836 | 0.23 | 0.2318 | 19.52 | | 0.699 | 8.0 | 2408 | 0.7566 | 0.264 | 0.087 | 0.2304 | 0.2312 | 19.43 | | 0.646 | 9.0 | 2709 | 0.7558 | 0.2815 | 0.0947 | 0.2447 | 0.2453 | 19.43 | | 0.6106 | 10.0 | 3010 | 0.7585 | 0.2692 | 0.0958 | 0.2377 | 0.2374 | 19.5 | | 0.6106 | 11.0 | 3311 | 0.7611 | 0.2635 | 0.0997 | 0.2283 | 0.2278 | 19.5 | | 0.5944 | 12.0 | 3612 | 0.7639 | 0.2785 | 0.0928 | 0.24 | 0.2403 | 19.46 | | 0.5944 | 13.0 | 3913 | 0.7612 | 0.2648 | 0.0886 | 0.231 | 0.2318 | 19.38 | | 0.5671 | 14.0 | 4214 | 0.7636 | 0.2786 | 0.0934 | 0.2431 | 0.2428 | 19.48 | | 0.5387 | 15.0 | 4515 | 0.7656 | 0.2834 | 0.0938 | 0.2442 | 0.2432 | 19.47 | | 0.5387 | 16.0 | 4816 | 0.7717 | 0.278 | 0.0927 | 0.2408 | 0.2403 | 19.48 | | 0.5349 | 17.0 | 5117 | 0.7725 | 0.2733 | 0.0912 | 0.2367 | 0.2368 | 19.47 | | 0.5349 | 18.0 | 5418 | 0.7761 | 0.2699 | 0.087 | 0.2339 | 0.2332 | 19.5 | | 0.5182 | 19.0 | 5719 | 0.7786 | 0.2694 | 0.0874 | 0.2333 | 0.2336 | 19.5 | | 0.5141 | 20.0 | 6020 | 0.7769 | 0.2685 | 0.0913 | 0.2316 | 0.2318 | 19.51 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0