--- base_model: AIRI-Institute/gena-lm-bert-large-t2t tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gena-lm-bert-large-t2t_ft_BioS45_1kbpHG19_DHSs_H3K27AC results: [] --- # gena-lm-bert-large-t2t_ft_BioS45_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-large-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-large-t2t) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6540 - F1 Score: 0.8311 - Precision: 0.8675 - Recall: 0.7976 - Accuracy: 0.8309 - Auc: 0.9197 - Prc: 0.9139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.5922 | 0.2103 | 500 | 0.5061 | 0.7627 | 0.8085 | 0.7218 | 0.7657 | 0.8513 | 0.8464 | | 0.4796 | 0.4207 | 1000 | 0.4288 | 0.8236 | 0.7931 | 0.8565 | 0.8086 | 0.8858 | 0.8800 | | 0.4414 | 0.6310 | 1500 | 0.4277 | 0.8394 | 0.7999 | 0.8831 | 0.8237 | 0.8978 | 0.8919 | | 0.4201 | 0.8414 | 2000 | 0.3959 | 0.8537 | 0.8147 | 0.8968 | 0.8397 | 0.9084 | 0.9033 | | 0.4098 | 1.0517 | 2500 | 0.4331 | 0.8459 | 0.8230 | 0.8702 | 0.8347 | 0.9101 | 0.9052 | | 0.3969 | 1.2621 | 3000 | 0.4024 | 0.8434 | 0.8531 | 0.8339 | 0.8385 | 0.9155 | 0.9096 | | 0.3855 | 1.4724 | 3500 | 0.3866 | 0.8600 | 0.8200 | 0.9040 | 0.8464 | 0.9183 | 0.9151 | | 0.3684 | 1.6828 | 4000 | 0.3759 | 0.8552 | 0.8349 | 0.8766 | 0.8452 | 0.9177 | 0.9138 | | 0.3692 | 1.8931 | 4500 | 0.3670 | 0.8592 | 0.8096 | 0.9153 | 0.8435 | 0.9218 | 0.9180 | | 0.3493 | 2.1035 | 5000 | 0.4659 | 0.8646 | 0.8353 | 0.8960 | 0.8536 | 0.9208 | 0.9186 | | 0.3424 | 2.3138 | 5500 | 0.4562 | 0.8593 | 0.8149 | 0.9089 | 0.8448 | 0.9225 | 0.9176 | | 0.3307 | 2.5242 | 6000 | 0.4541 | 0.8557 | 0.8066 | 0.9113 | 0.8397 | 0.9230 | 0.9176 | | 0.3525 | 2.7345 | 6500 | 0.4808 | 0.8565 | 0.8336 | 0.8806 | 0.8460 | 0.9213 | 0.9136 | | 0.3783 | 2.9449 | 7000 | 0.4244 | 0.8475 | 0.8481 | 0.8468 | 0.8410 | 0.9206 | 0.9089 | | 0.3226 | 3.1552 | 7500 | 0.6540 | 0.8311 | 0.8675 | 0.7976 | 0.8309 | 0.9197 | 0.9139 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0