--- license: other base_model: meta-llama/Meta-Llama-3-8B tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: taozi555/bagel type: sharegpt # - path: jondurbin/cinematika-v0.1 # type: text - path: MinervaAI/Aesir-Preview type: sharegpt - path: Norquinal/claude_multiround_chat_30k type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./out chat_template: alpaca sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: waifu-8b wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: 100 eval_table_size: saves_per_epoch: save_steps: 100 save_total_limit: 20 debug: deepspeed: /workspace/deepspeed.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# out This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0419 | 0.0 | 1 | 1.1113 | | 0.9179 | 0.07 | 100 | 0.8886 | | 1.0123 | 0.14 | 200 | 0.8822 | | 0.9106 | 0.21 | 300 | 0.8701 | | 0.8992 | 0.28 | 400 | 0.8637 | | 0.7915 | 0.35 | 500 | 0.8527 | | 0.9123 | 0.42 | 600 | 0.8448 | | 0.7849 | 0.49 | 700 | 0.8381 | | 0.8381 | 0.56 | 800 | 0.8344 | | 0.7652 | 0.63 | 900 | 0.8230 | | 0.9006 | 0.7 | 1000 | 0.8167 | | 0.8589 | 0.77 | 1100 | 0.8088 | | 0.7635 | 0.84 | 1200 | 0.8016 | | 0.7696 | 0.91 | 1300 | 0.7951 | | 0.8476 | 0.98 | 1400 | 0.7879 | | 0.6031 | 1.03 | 1500 | 0.8063 | | 0.5386 | 1.09 | 1600 | 0.8065 | | 0.5298 | 1.16 | 1700 | 0.8015 | | 0.5736 | 1.23 | 1800 | 0.7979 | | 0.5761 | 1.3 | 1900 | 0.7939 | | 0.5576 | 1.37 | 2000 | 0.7917 | | 0.4814 | 1.44 | 2100 | 0.7879 | | 0.5146 | 1.51 | 2200 | 0.7842 | | 0.4577 | 1.58 | 2300 | 0.7832 | | 0.4821 | 1.65 | 2400 | 0.7806 | | 0.6088 | 1.72 | 2500 | 0.7782 | | 0.5113 | 1.79 | 2600 | 0.7785 | | 0.5861 | 1.86 | 2700 | 0.7779 | | 0.4885 | 1.93 | 2800 | 0.7773 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0