--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: phi-2-pl-v_0_1 results: [] --- # phi-2-pl-v_0_1 This model is based on [microsoft/phi-2](https://huggingface.co/microsoft/phi-2). It was trained from scratch on the 20231201 Polish Wikipedia dump. ## Model description The model was trained for a context length of 2048 tokens. ## Intended uses & limitations The model is intended for research purposes only. It may generate fictitious, incorrect, unethical, or biased texts. At its current state, it is not suitable for production purposes. Example: ``` tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, use_fast=True ) model = AutoModelForCausalLM.from_pretrained( model_name, vocab_size=len(tokenizer), attn_implementation="flash_attention_2", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto" ) model.eval() generation_config = GenerationConfig.from_pretrained( model_name, do_sample=False, repetition_penalty=1.5, min_new_tokens=1, max_new_tokens=128 ) test_input = tokenizer("Wrocław to polski miasto. Wrocław jest ", return_tensors='pt').to(torch.device('cuda')) test_output = model.generate(**test_input, generation_config=generation_config) test_preds = tokenizer.batch_decode(sequences=test_output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(test_preds) ``` ## Training and evaluation data The 20231201 Polish Wikipedia dump. ## Training procedure ### Training environment - GPU: 1 x A100X (80GB) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - num_devices: 1 - train_batch_size: 8 - gradient_accumulation_steps: 1 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - precision: bf16 - seed: 42 ### Training results - runtime: 1mo 3d 9h 40m 16s - train_loss: 2.983 ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1