--- language: - en - zh license: apache-2.0 library_name: transformers tags: - llama - latest - TensorBlock - GGUF datasets: - teknium/OpenHermes-2.5 pipeline_tag: text-generation base_model: yaojialzc/Gigi-Llama3-8B-Chinese-zh model-index: - name: Gigi-Llama3-8B-Chinese-zh results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.91 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.14 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=yaojialzc/Gigi-Llama3-8B-Chinese-zh name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## yaojialzc/Gigi-Llama3-8B-Chinese-zh - GGUF This repo contains GGUF format model files for [yaojialzc/Gigi-Llama3-8B-Chinese-zh](https://huggingface.co/yaojialzc/Gigi-Llama3-8B-Chinese-zh). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Gigi-Llama3-8B-Chinese-zh-Q2_K.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [Gigi-Llama3-8B-Chinese-zh-Q3_K_S.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss | | [Gigi-Llama3-8B-Chinese-zh-Q3_K_M.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [Gigi-Llama3-8B-Chinese-zh-Q3_K_L.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [Gigi-Llama3-8B-Chinese-zh-Q4_0.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Gigi-Llama3-8B-Chinese-zh-Q4_K_S.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [Gigi-Llama3-8B-Chinese-zh-Q4_K_M.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [Gigi-Llama3-8B-Chinese-zh-Q5_0.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Gigi-Llama3-8B-Chinese-zh-Q5_K_S.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [Gigi-Llama3-8B-Chinese-zh-Q5_K_M.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [Gigi-Llama3-8B-Chinese-zh-Q6_K.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [Gigi-Llama3-8B-Chinese-zh-Q8_0.gguf](https://huggingface.co/tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF/blob/main/Gigi-Llama3-8B-Chinese-zh-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF --include "Gigi-Llama3-8B-Chinese-zh-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Gigi-Llama3-8B-Chinese-zh-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```