---
license: apache-2.0
datasets:
- openbmb/UltraFeedback
language:
- en
pipeline_tag: text-generation
tags:
- TensorBlock
- GGUF
base_model: UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2
---
## UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2 - GGUF
This repo contains GGUF format model files for [UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q3_K_S.gguf) | Q3_K_S | 3.664 GB | very small, high quality loss |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss |
| [Llama-3-Instruct-8B-SPPO-Iter2-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF/blob/main/Llama-3-Instruct-8B-SPPO-Iter2-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF --include "Llama-3-Instruct-8B-SPPO-Iter2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Llama-3-Instruct-8B-SPPO-Iter2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```