--- language: - en license: llama3.2 library_name: transformers base_model: meditsolutions/Llama-3.2-SUN-2.5B-chat datasets: - argilla/OpenHermesPreferences - argilla/magpie-ultra-v0.1 - argilla/Capybara-Preferences-Filtered - mlabonne/open-perfectblend - HuggingFaceTB/everyday-conversations-llama3.1-2k - WizardLMTeam/WizardLM_evol_instruct_V2_196k - ProlificAI/social-reasoning-rlhf pipeline_tag: text-generation tags: - TensorBlock - GGUF model-index: - name: Llama-3.2-SUN-2.5B-chat results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 56.04 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 9.41 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 5.06 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.23 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 1.11 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 9.04 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-2.5B-chat name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## meditsolutions/Llama-3.2-SUN-2.5B-chat - GGUF This repo contains GGUF format model files for [meditsolutions/Llama-3.2-SUN-2.5B-chat](https://huggingface.co/meditsolutions/Llama-3.2-SUN-2.5B-chat). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> Cutting Knowledge Date: December 2023 Today Date: 25 Nov 2024 {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3.2-SUN-2.5B-chat-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q2_K.gguf) | Q2_K | 1.025 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-3.2-SUN-2.5B-chat-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q3_K_S.gguf) | Q3_K_S | 1.173 GB | very small, high quality loss | | [Llama-3.2-SUN-2.5B-chat-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q3_K_M.gguf) | Q3_K_M | 1.271 GB | very small, high quality loss | | [Llama-3.2-SUN-2.5B-chat-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q3_K_L.gguf) | Q3_K_L | 1.355 GB | small, substantial quality loss | | [Llama-3.2-SUN-2.5B-chat-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q4_0.gguf) | Q4_0 | 1.466 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3.2-SUN-2.5B-chat-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q4_K_S.gguf) | Q4_K_S | 1.475 GB | small, greater quality loss | | [Llama-3.2-SUN-2.5B-chat-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q4_K_M.gguf) | Q4_K_M | 1.540 GB | medium, balanced quality - recommended | | [Llama-3.2-SUN-2.5B-chat-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q5_0.gguf) | Q5_0 | 1.742 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3.2-SUN-2.5B-chat-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q5_K_S.gguf) | Q5_K_S | 1.742 GB | large, low quality loss - recommended | | [Llama-3.2-SUN-2.5B-chat-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q5_K_M.gguf) | Q5_K_M | 1.780 GB | large, very low quality loss - recommended | | [Llama-3.2-SUN-2.5B-chat-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q6_K.gguf) | Q6_K | 2.036 GB | very large, extremely low quality loss | | [Llama-3.2-SUN-2.5B-chat-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF/blob/main/Llama-3.2-SUN-2.5B-chat-Q8_0.gguf) | Q8_0 | 2.634 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF --include "Llama-3.2-SUN-2.5B-chat-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-3.2-SUN-2.5B-chat-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```