--- library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Do you offer any referral bonuses for bringing new Pro subscribers - text: Point out any dull descriptions that need more color - text: Find places where I repeat my main points unnecessarily - text: Any suggestions for a surprising end to a short story - text: What are some cool ways to describe a hidden civilization inference: true model-index: - name: SetFit results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | comments_assistance | | | chat_assistance | | | pro_subscription_assistance | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Point out any dull descriptions that need more color") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 8.9364 | 15 | | Label | Training Sample Count | |:----------------------------|:----------------------| | chat_assistance | 163 | | comments_assistance | 156 | | pro_subscription_assistance | 121 | ### Framework Versions - Python: 3.10.15 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```