--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng-4 results: [] --- # speaker-segmentation-fine-tuned-callhome-eng-4 This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4660 - Der: 0.1806 - False Alarm: 0.0592 - Missed Detection: 0.0714 - Confusion: 0.0501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4104 | 1.0 | 362 | 0.4742 | 0.1920 | 0.0615 | 0.0742 | 0.0562 | | 0.4041 | 2.0 | 724 | 0.4738 | 0.1868 | 0.0620 | 0.0714 | 0.0534 | | 0.3741 | 3.0 | 1086 | 0.4695 | 0.1851 | 0.0625 | 0.0705 | 0.0521 | | 0.3612 | 4.0 | 1448 | 0.4689 | 0.1814 | 0.0588 | 0.0707 | 0.0519 | | 0.3404 | 5.0 | 1810 | 0.4649 | 0.1792 | 0.0580 | 0.0720 | 0.0492 | | 0.3462 | 6.0 | 2172 | 0.4620 | 0.1812 | 0.0615 | 0.0692 | 0.0505 | | 0.3296 | 7.0 | 2534 | 0.4631 | 0.1800 | 0.0582 | 0.0713 | 0.0506 | | 0.3261 | 8.0 | 2896 | 0.4731 | 0.1820 | 0.0586 | 0.0733 | 0.0501 | | 0.3251 | 9.0 | 3258 | 0.4663 | 0.1811 | 0.0579 | 0.0727 | 0.0506 | | 0.3154 | 10.0 | 3620 | 0.4660 | 0.1806 | 0.0592 | 0.0714 | 0.0501 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.19.1