--- license: cc-by-4.0 base_model: pythainlp/thainer-corpus-v2-base-model tags: - generated_from_trainer datasets: - lst20 metrics: - precision - recall - f1 - accuracy model-index: - name: toneza results: - task: name: Token Classification type: token-classification dataset: name: lst20 type: lst20 config: default split: validation args: default metrics: - name: Precision type: precision value: 0.768370802562324 - name: Recall type: recall value: 0.8120041393583994 - name: F1 type: f1 value: 0.7895851240015932 - name: Accuracy type: accuracy value: 0.956478116244312 --- # toneza This model is a fine-tuned version of [pythainlp/thainer-corpus-v2-base-model](https://huggingface.co/pythainlp/thainer-corpus-v2-base-model) on the lst20 dataset. It achieves the following results on the evaluation set: - Loss: 0.1293 - Precision: 0.7684 - Recall: 0.8120 - F1: 0.7896 - Accuracy: 0.9565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1226 | 1.0 | 1978 | 0.1416 | 0.7414 | 0.7802 | 0.7603 | 0.9518 | | 0.098 | 2.0 | 3956 | 0.1324 | 0.7602 | 0.7966 | 0.7780 | 0.9545 | | 0.0895 | 3.0 | 5934 | 0.1293 | 0.7684 | 0.8120 | 0.7896 | 0.9565 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0