--- tags: - generated_from_trainer - summarize - pubmed - med datasets: - pubmed-summarization metrics: - rouge model-index: - name: fine-tuned-16384-pubmed results: [] language: - en --- # fine-tuned-16384-pubmed This model is fine-tuned on the pubmed-summarization dataset. It achieves the following results on the evaluation set: - Loss: 0.3719 - Rouge1: 0.4602 - Rouge2: 0.2253 - Rougel: 0.2911 - Rougelsum: 0.4283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 12.7776 | 0.2667 | 50 | 9.5450 | 0.4552 | 0.2219 | 0.2848 | 0.4234 | | 7.2062 | 0.5333 | 100 | 4.6159 | 0.4564 | 0.2215 | 0.2874 | 0.4241 | | 4.0511 | 0.8 | 150 | 2.7224 | 0.4615 | 0.2222 | 0.2914 | 0.4287 | | 2.657 | 1.0667 | 200 | 1.7347 | 0.4597 | 0.2226 | 0.2921 | 0.4273 | | 1.7104 | 1.3333 | 250 | 1.0021 | 0.4583 | 0.2231 | 0.2918 | 0.4261 | | 0.9336 | 1.6 | 300 | 0.5423 | 0.4586 | 0.2228 | 0.2905 | 0.4259 | | 0.4902 | 1.8667 | 350 | 0.3719 | 0.4602 | 0.2253 | 0.2911 | 0.4283 | | 0.4032 | 2 | 400 | 0.2967 | 0.4718 | 0.2203 | 0.2871 | 0.4243 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.19.1