--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8239812959251837 --- # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9095 - Accuracy: 0.8240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.78 | 0.96 | 17 | 1.7432 | 0.4321 | | 1.7105 | 1.96 | 34 | 1.6596 | 0.6307 | | 1.6045 | 2.96 | 51 | 1.5369 | 0.6758 | | 1.6526 | 3.96 | 68 | 1.4111 | 0.7139 | | 1.4018 | 4.96 | 85 | 1.2686 | 0.7602 | | 1.2812 | 5.96 | 102 | 1.1433 | 0.7714 | | 1.3282 | 6.96 | 119 | 1.0643 | 0.7910 | | 1.1246 | 7.96 | 136 | 0.9794 | 0.8133 | | 1.0731 | 8.96 | 153 | 0.9279 | 0.8087 | | 1.0531 | 9.96 | 170 | 0.9095 | 0.8240 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1