---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: intfloat/e5-small-v2
metrics:
- accuracy
widget:
- text: 'query: 对的,关于上次讨论的项目,我有几个问题需要确认一下。'
- text: 'query: Sopii, nähdään silloin!'
- text: 'query: Hyvin menee, kiitos. Entä sinulla?'
- text: 'query: 好的,那就先这样,李先生,再见。'
- text: 'query: Jeg har det også godt. Skal vi mødes senere?'
pipeline_tag: text-classification
inference: true
---
# SetFit with intfloat/e5-small-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- 'query: Oi Pedro, você viu o novo filme que estreou semana passada?'
- 'query: Também gostei muito. Quem sabe podemos assistir juntos na próxima vez.'
- 'query: Jeg har det godt, tak. Hvad med dig?'
|
| 1 | - 'query: Combinado! Vamos marcar um dia. Até mais!'
- 'query: Måske. Skal vi tale om det senere?'
- 'query: Absolument. On se voit ce soir pour fêter ça. À plus tard!'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("query: 好的,那就先这样,李先生,再见。")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 6.2674 | 18 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 85 |
| 1 | 87 |
### Training Hyperparameters
- batch_size: (4, 1)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (1e-06, 1e-06)
- head_learning_rate: 8e-06
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.05
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: intfloat/e5-small-v2
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:----------:|:--------:|:-------------:|:---------------:|
| 0.0003 | 1 | 0.3851 | - |
| 0.0135 | 50 | 0.3455 | - |
| 0.0270 | 100 | 0.3359 | 0.3522 |
| 0.0406 | 150 | 0.3459 | - |
| 0.0541 | 200 | 0.3645 | 0.3221 |
| 0.0676 | 250 | 0.3264 | - |
| 0.0811 | 300 | 0.2955 | 0.2759 |
| 0.0946 | 350 | 0.2546 | - |
| 0.1082 | 400 | 0.2253 | 0.2373 |
| 0.1217 | 450 | 0.2004 | - |
| 0.1352 | 500 | 0.3578 | 0.2318 |
| 0.1487 | 550 | 0.2628 | - |
| 0.1622 | 600 | 0.2614 | 0.2222 |
| 0.1758 | 650 | 0.2095 | - |
| 0.1893 | 700 | 0.2345 | 0.2196 |
| 0.2028 | 750 | 0.1842 | - |
| 0.2163 | 800 | 0.1942 | 0.2326 |
| 0.2299 | 850 | 0.218 | - |
| 0.2434 | 900 | 0.3134 | 0.2422 |
| 0.2569 | 950 | 0.1639 | - |
| 0.2704 | 1000 | 0.2138 | 0.23 |
| 0.2839 | 1050 | 0.3102 | - |
| 0.2975 | 1100 | 0.1347 | 0.2348 |
| 0.3110 | 1150 | 0.1698 | - |
| 0.3245 | 1200 | 0.2467 | 0.2547 |
| 0.3380 | 1250 | 0.1064 | - |
| 0.3515 | 1300 | 0.1757 | 0.2383 |
| 0.3651 | 1350 | 0.1093 | - |
| 0.3786 | 1400 | 0.2869 | 0.2393 |
| 0.3921 | 1450 | 0.2519 | - |
| 0.4056 | 1500 | 0.2344 | 0.2323 |
| 0.4191 | 1550 | 0.2804 | - |
| 0.4327 | 1600 | 0.1082 | 0.2403 |
| 0.4462 | 1650 | 0.2025 | - |
| 0.4597 | 1700 | 0.2213 | 0.2547 |
| 0.4732 | 1750 | 0.1302 | - |
| 0.4867 | 1800 | 0.1517 | 0.2345 |
| 0.5003 | 1850 | 0.2779 | - |
| 0.5138 | 1900 | 0.1918 | 0.2339 |
| 0.5273 | 1950 | 0.1132 | - |
| 0.5408 | 2000 | 0.2075 | 0.253 |
| 0.5544 | 2050 | 0.2488 | - |
| 0.5679 | 2100 | 0.0579 | 0.2526 |
| 0.5814 | 2150 | 0.3789 | - |
| 0.5949 | 2200 | 0.167 | 0.2573 |
| 0.6084 | 2250 | 0.199 | - |
| 0.6220 | 2300 | 0.0824 | 0.2258 |
| 0.6355 | 2350 | 0.1396 | - |
| 0.6490 | 2400 | 0.3674 | 0.2527 |
| 0.6625 | 2450 | 0.2448 | - |
| 0.6760 | 2500 | 0.1623 | 0.249 |
| 0.6896 | 2550 | 0.2198 | - |
| 0.7031 | 2600 | 0.118 | 0.2613 |
| 0.7166 | 2650 | 0.1511 | - |
| 0.7301 | 2700 | 0.1162 | 0.2351 |
| 0.7436 | 2750 | 0.1393 | - |
| 0.7572 | 2800 | 0.1845 | 0.2418 |
| 0.7707 | 2850 | 0.1821 | - |
| 0.7842 | 2900 | 0.1762 | 0.254 |
| 0.7977 | 2950 | 0.0477 | - |
| 0.8112 | 3000 | 0.1928 | 0.2633 |
| 0.8248 | 3050 | 0.1363 | - |
| 0.8383 | 3100 | 0.0811 | 0.261 |
| 0.8518 | 3150 | 0.0734 | - |
| **0.8653** | **3200** | **0.0917** | **0.2202** |
| 0.8789 | 3250 | 0.3027 | - |
| 0.8924 | 3300 | 0.1528 | 0.2767 |
| 0.9059 | 3350 | 0.2234 | - |
| 0.9194 | 3400 | 0.1048 | 0.2667 |
| 0.9329 | 3450 | 0.1865 | - |
| 0.9465 | 3500 | 0.051 | 0.2612 |
| 0.9600 | 3550 | 0.0218 | - |
| 0.9735 | 3600 | 0.1524 | 0.243 |
| 0.9870 | 3650 | 0.1759 | - |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.11
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```