--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_cola_sp0_ar0_one results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Accuracy type: accuracy value: 0.87890625 --- # t5-large_cola_sp0_ar0_one This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4212 - Accuracy: 0.8789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6975 | 0.05 | 25 | 0.6708 | 0.6913 | | 0.5747 | 0.11 | 50 | 0.5123 | 0.7210 | | 0.4924 | 0.16 | 75 | 0.5004 | 0.7939 | | 0.4259 | 0.21 | 100 | 0.4760 | 0.7987 | | 0.3834 | 0.27 | 125 | 0.5001 | 0.8111 | | 0.3942 | 0.32 | 150 | 0.4982 | 0.8092 | | 0.4213 | 0.37 | 175 | 0.5078 | 0.8150 | | 0.3845 | 0.42 | 200 | 0.4346 | 0.8092 | | 0.4145 | 0.48 | 225 | 0.4562 | 0.8150 | | 0.3751 | 0.53 | 250 | 0.4948 | 0.8169 | | 0.4134 | 0.58 | 275 | 0.4356 | 0.8236 | | 0.3777 | 0.64 | 300 | 0.4627 | 0.8188 | | 0.3815 | 0.69 | 325 | 0.4772 | 0.8226 | | 0.367 | 0.74 | 350 | 0.4117 | 0.8313 | | 0.342 | 0.8 | 375 | 0.4177 | 0.8351 | | 0.3136 | 0.85 | 400 | 0.5026 | 0.8265 | | 0.3222 | 0.9 | 425 | 0.5323 | 0.8303 | | 0.3863 | 0.96 | 450 | 0.4937 | 0.8245 | | 0.348 | 1.01 | 475 | 0.4704 | 0.8188 | | 0.2134 | 1.06 | 500 | 0.6430 | 0.8207 | | 0.2671 | 1.11 | 525 | 0.5518 | 0.8226 | | 0.1892 | 1.17 | 550 | 0.5869 | 0.8370 | | 0.2184 | 1.22 | 575 | 0.5816 | 0.8332 | | 0.22 | 1.27 | 600 | 0.5451 | 0.8274 | | 0.1982 | 1.33 | 625 | 0.7300 | 0.8313 | | 0.2734 | 1.38 | 650 | 0.7040 | 0.8351 | | 0.2186 | 1.43 | 675 | 0.6650 | 0.8341 | | 0.2835 | 1.49 | 700 | 0.6628 | 0.8322 | | 0.2503 | 1.54 | 725 | 0.5194 | 0.8341 | | 0.2438 | 1.59 | 750 | 0.5362 | 0.8313 | | 0.2307 | 1.65 | 775 | 0.5405 | 0.8293 | | 0.2111 | 1.7 | 800 | 0.6129 | 0.8265 | | 0.1952 | 1.75 | 825 | 0.6411 | 0.8255 | | 0.2873 | 1.8 | 850 | 0.6279 | 0.8245 | | 0.295 | 1.86 | 875 | 0.5938 | 0.8236 | | 0.2967 | 1.91 | 900 | 0.5694 | 0.8265 | | 0.2128 | 1.96 | 925 | 0.5576 | 0.8265 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.11.6