--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: metacognitive-cls results: [] --- # metacognitive-cls This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1024 - Accuracy: 0.9640 - F1: 0.8326 - Precision: 0.8742 - Recall: 0.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.946303722432942e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6685 | 1.0 | 76 | 0.6265 | 0.7931 | 0.0543 | 0.0559 | 0.0528 | | 0.45 | 2.0 | 152 | 0.2973 | 0.8983 | 0.3275 | 0.6410 | 0.2199 | | 0.2947 | 3.0 | 228 | 0.2671 | 0.9069 | 0.4910 | 0.6385 | 0.3988 | | 0.2561 | 4.0 | 304 | 0.2246 | 0.9234 | 0.5323 | 0.8516 | 0.3871 | | 0.2201 | 5.0 | 380 | 0.1926 | 0.9442 | 0.6988 | 0.8909 | 0.5748 | | 0.1896 | 6.0 | 456 | 0.1704 | 0.9439 | 0.6828 | 0.9385 | 0.5367 | | 0.1574 | 7.0 | 532 | 0.1468 | 0.9515 | 0.7452 | 0.9110 | 0.6305 | | 0.1203 | 8.0 | 608 | 0.1213 | 0.9591 | 0.8056 | 0.8653 | 0.7537 | | 0.0924 | 9.0 | 684 | 0.1119 | 0.9634 | 0.8290 | 0.8734 | 0.7889 | | 0.0771 | 10.0 | 760 | 0.1073 | 0.9620 | 0.8206 | 0.8767 | 0.7713 | | 0.067 | 11.0 | 836 | 0.1016 | 0.9657 | 0.8415 | 0.8762 | 0.8094 | | 0.0609 | 12.0 | 912 | 0.1024 | 0.9640 | 0.8326 | 0.8742 | 0.7947 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1