--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: ModernBERT-base-finetuned-pos results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9028893991580559 - name: Recall type: recall value: 0.91583569886212 - name: F1 type: f1 value: 0.9093164709424872 - name: Accuracy type: accuracy value: 0.9267220257724449 --- # ModernBERT-base-finetuned-pos This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.2935 - Precision: 0.9029 - Recall: 0.9158 - F1: 0.9093 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6485 | 1.0 | 878 | 0.3352 | 0.8911 | 0.9007 | 0.8959 | 0.9159 | | 0.1997 | 2.0 | 1756 | 0.2890 | 0.9031 | 0.9110 | 0.9070 | 0.9246 | | 0.1274 | 3.0 | 2634 | 0.2935 | 0.9029 | 0.9158 | 0.9093 | 0.9267 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0