--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: cls_comment-phobert-base-v2-v1.0 results: [] --- # cls_comment-phobert-base-v2-v1.0 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2202 - Accuracy: 0.9181 - F1 Score: 0.8517 - Recall: 0.8617 - Precision: 0.8419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 0.2545 | 1.0 | 234 | 0.2509 | 0.8981 | 0.8068 | 0.7796 | 0.8360 | | 0.208 | 2.0 | 469 | 0.2259 | 0.9098 | 0.8399 | 0.8666 | 0.8148 | | 0.1675 | 2.99 | 702 | 0.2202 | 0.9181 | 0.8517 | 0.8617 | 0.8419 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2