--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for densenet121.ra_in1k A DenseNet image classification model. Pretrained on ImageNet-1k in `timm` by Ross Wightman using RandAugment `RA` recipe. Related to `B` recipe in [ResNet Strikes Back](https://arxiv.org/abs/2110.00476). ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 8.0 - GMACs: 2.9 - Activations (M): 6.9 - Image size: train = 224 x 224, test = 288 x 288 - **Papers:** - Densely Connected Convolutional Networks: https://arxiv.org/abs/1608.06993 - ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476 - **Dataset:** ImageNet-1k - **Original:** https://github.com/huggingface/pytorch-image-models ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('densenet121.ra_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'densenet121.ra_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 1024, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'densenet121.ra_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{huang2017densely, title={Densely Connected Convolutional Networks}, author={Huang, Gao and Liu, Zhuang and van der Maaten, Laurens and Weinberger, Kilian Q }, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2017} } ``` ```bibtex @inproceedings{wightman2021resnet, title={ResNet strikes back: An improved training procedure in timm}, author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} } ```