--- tags: - image-classification - timm - transformers library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for test_efficientnet.r160_in1k A very small test EfficientNet image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 0.4 - GMACs: 0.1 - Activations (M): 0.6 - Image size: 160 x 160 - **Dataset:** ImageNet-1k - **Papers:** - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models - **Original:** https://github.com/huggingface/pytorch-image-models ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('test_efficientnet.r160_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'test_efficientnet.r160_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 16, 80, 80]) # torch.Size([1, 24, 40, 40]) # torch.Size([1, 32, 20, 20]) # torch.Size([1, 48, 10, 10]) # torch.Size([1, 64, 5, 5]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'test_efficientnet.r160_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 256, 5, 5) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison ### By Top-1 |model |img_size|top1 |top5 |param_count| |--------------------------------|--------|------|------|-----------| |test_convnext3.r160_in1k |192 |54.558|79.356|0.47 | |test_convnext2.r160_in1k |192 |53.62 |78.636|0.48 | |test_convnext2.r160_in1k |160 |53.51 |78.526|0.48 | |test_convnext3.r160_in1k |160 |53.328|78.318|0.47 | |test_convnext.r160_in1k |192 |48.532|74.944|0.27 | |test_nfnet.r160_in1k |192 |48.298|73.446|0.38 | |test_convnext.r160_in1k |160 |47.764|74.152|0.27 | |test_nfnet.r160_in1k |160 |47.616|72.898|0.38 | |test_efficientnet.r160_in1k |192 |47.164|71.706|0.36 | |test_efficientnet_evos.r160_in1k|192 |46.924|71.53 |0.36 | |test_byobnet.r160_in1k |192 |46.688|71.668|0.46 | |test_efficientnet_evos.r160_in1k|160 |46.498|71.006|0.36 | |test_efficientnet.r160_in1k |160 |46.454|71.014|0.36 | |test_byobnet.r160_in1k |160 |45.852|70.996|0.46 | |test_efficientnet_ln.r160_in1k |192 |44.538|69.974|0.36 | |test_efficientnet_gn.r160_in1k |192 |44.448|69.75 |0.36 | |test_efficientnet_ln.r160_in1k |160 |43.916|69.404|0.36 | |test_efficientnet_gn.r160_in1k |160 |43.88 |69.162|0.36 | |test_vit2.r160_in1k |192 |43.454|69.798|0.46 | |test_resnet.r160_in1k |192 |42.376|68.744|0.47 | |test_vit2.r160_in1k |160 |42.232|68.982|0.46 | |test_vit.r160_in1k |192 |41.984|68.64 |0.37 | |test_resnet.r160_in1k |160 |41.578|67.956|0.47 | |test_vit.r160_in1k |160 |40.946|67.362|0.37 | ## Citation ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```