--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: prompt_fine_tuned_boolq_bert results: [] --- # prompt_fine_tuned_boolq_bert This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6468 - Accuracy: 0.7778 - F1: 0.7481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 12 | 0.6797 | 0.6667 | 0.6872 | | No log | 2.0 | 24 | 0.6667 | 0.6667 | 0.6667 | | No log | 3.0 | 36 | 0.6563 | 0.6667 | 0.6667 | | No log | 4.0 | 48 | 0.6507 | 0.7222 | 0.7072 | | No log | 5.0 | 60 | 0.6478 | 0.7222 | 0.7072 | | No log | 6.0 | 72 | 0.6468 | 0.7778 | 0.7481 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1